Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 1, 2011
Instability and patterns. Issue dedicated to the memory of A. Golovin
Page(s) 149 - 162
Published online 09 June 2010
  1. V. I. Arnold (Editor). Dynamical systems V: Bifurcation theory and catastrophe theory. Encyclopaedia of Mathematical Sciences. Springer. New York, Berlin, Heidelberg, 1999.
  2. M. Brons, M. Krupa, M. Wechselberger. Mixed mode oscillations due to the generalized canard phenomenon. Fields Institute Communications, 49 (2006), 39–63.
  3. M. Brons, T. J. Kaper, H. G. Rotstein (Editors). Mixed Mode Oscillations: Experiment, Computation, and Analysis. Focus Issue of Chaos, 18 (2008).
  4. J. L. Callot, F. Diener, M. Diener. Problem of duck hunt. Compt. Rend. Acad. Sci., 286 (1978), 1059–1061.
  5. P. Collet, J.-P. Eckmann, H. Koch. On universality for area-preserving maps of the plane. Physica D, 3 (1981), 457–467. [CrossRef] [MathSciNet]
  6. W. Eckhaus. Relaxation oscillations including a standard chase on French ducks. Lect. Notes Math., 985 (1983), 449–494. [CrossRef]
  7. G. B. Ermentrout. Period doublings and possible chaos in neural models. SIAM J. Appl. Math., 44 (1984), 80–95. [CrossRef] [MathSciNet]
  8. M. J. Feigenbaum. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys., 19 (1978), 25–52. [NASA ADS] [CrossRef] [MathSciNet]
  9. J. M. Greene, R. S. MacKay, F. Vivaldi, M. J. Feigenbaum. Universal behaviour in families of area-preserving maps. Physica D, 3 (1981), 468–486. [CrossRef] [MathSciNet]
  10. J. Keener, J. Sneyd. Mathematical physiology. Springer, New York, 1998.
  11. A. Milik, P. Szmolyan, H. Löffelmann, E. Gröller. The geometry of mixed-mode oscillations in the 3d-autocatalator. Int. J. Bif. & Chaos, 8 (1998), 505–519. [CrossRef]
  12. J. Rinzel. Formal Classification of bursting mechanisms in excitable systems. Lecture Notes Biomathematics, 71 (1987) 267–281, Springer, New York.
  13. O. E. Rössler. An equation for continuous chaos. Phys. Lett. A, 57 (1976), 397–398. [NASA ADS] [CrossRef]
  14. H. G. Rotstein, R. Kuske. Localized and asynchronous patterns via canards in coupled calcium oscillators. Physica D, 215 (2006), 46–61. [CrossRef] [MathSciNet]
  15. X. Sailer, M. Zaks, L. Schimansky-Geier. Collective dynamics in an ensemble of globally coupled FHN systems. Fluctuation & Noise Lett., 5 (2005), L299–L304. [CrossRef]
  16. T. Verechtchaguina, I. M. Sokolov, L. Schimansky-Geier. First passage time densities in non-Markovian models with subthreshold oscillations. Europhys. Lett., 73 (2006), 691–697. [CrossRef]
  17. M. Wechselberger. Existence and bifurcation of canards in R3 in the case of a folded node. SIAM J. Appl. Dyn. Sys., 4 (2005), 101–139. [CrossRef]
  18. M. A. Zaks, X. Sailer, L. Schimansky-Geier, A. Neiman, Noise induced complexity: from subthreshold oscillations to spiking in coupled excitable systems. Chaos, 15 (2005), 026117. [CrossRef] [MathSciNet]
  19. A. B. Zisook. Universal effects of dissipation in two-dimensional mappings. Phys. Rev. A, 24 (1981), 1640–1642. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.