Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 1, 2011
Instability and patterns. Issue dedicated to the memory of A. Golovin
Page(s) 149 - 162
Published online 09 June 2010
  1. V. I. Arnold (Editor). Dynamical systems V: Bifurcation theory and catastrophe theory. Encyclopaedia of Mathematical Sciences. Springer. New York, Berlin, Heidelberg, 1999. [Google Scholar]
  2. M. Brons, M. Krupa, M. Wechselberger. Mixed mode oscillations due to the generalized canard phenomenon. Fields Institute Communications, 49 (2006), 39–63. [Google Scholar]
  3. M. Brons, T. J. Kaper, H. G. Rotstein (Editors). Mixed Mode Oscillations: Experiment, Computation, and Analysis. Focus Issue of Chaos, 18 (2008). [Google Scholar]
  4. J. L. Callot, F. Diener, M. Diener. Problem of duck hunt. Compt. Rend. Acad. Sci., 286 (1978), 1059–1061. [Google Scholar]
  5. P. Collet, J.-P. Eckmann, H. Koch. On universality for area-preserving maps of the plane. Physica D, 3 (1981), 457–467. [CrossRef] [MathSciNet] [Google Scholar]
  6. W. Eckhaus. Relaxation oscillations including a standard chase on French ducks. Lect. Notes Math., 985 (1983), 449–494. [CrossRef] [Google Scholar]
  7. G. B. Ermentrout. Period doublings and possible chaos in neural models. SIAM J. Appl. Math., 44 (1984), 80–95. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. J. Feigenbaum. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys., 19 (1978), 25–52. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  9. J. M. Greene, R. S. MacKay, F. Vivaldi, M. J. Feigenbaum. Universal behaviour in families of area-preserving maps. Physica D, 3 (1981), 468–486. [CrossRef] [MathSciNet] [Google Scholar]
  10. J. Keener, J. Sneyd. Mathematical physiology. Springer, New York, 1998. [Google Scholar]
  11. A. Milik, P. Szmolyan, H. Löffelmann, E. Gröller. The geometry of mixed-mode oscillations in the 3d-autocatalator. Int. J. Bif. & Chaos, 8 (1998), 505–519. [CrossRef] [Google Scholar]
  12. J. Rinzel. Formal Classification of bursting mechanisms in excitable systems. Lecture Notes Biomathematics, 71 (1987) 267–281, Springer, New York. [Google Scholar]
  13. O. E. Rössler. An equation for continuous chaos. Phys. Lett. A, 57 (1976), 397–398. [NASA ADS] [CrossRef] [Google Scholar]
  14. H. G. Rotstein, R. Kuske. Localized and asynchronous patterns via canards in coupled calcium oscillators. Physica D, 215 (2006), 46–61. [CrossRef] [MathSciNet] [Google Scholar]
  15. X. Sailer, M. Zaks, L. Schimansky-Geier. Collective dynamics in an ensemble of globally coupled FHN systems. Fluctuation & Noise Lett., 5 (2005), L299–L304. [CrossRef] [Google Scholar]
  16. T. Verechtchaguina, I. M. Sokolov, L. Schimansky-Geier. First passage time densities in non-Markovian models with subthreshold oscillations. Europhys. Lett., 73 (2006), 691–697. [CrossRef] [Google Scholar]
  17. M. Wechselberger. Existence and bifurcation of canards in R3 in the case of a folded node. SIAM J. Appl. Dyn. Sys., 4 (2005), 101–139. [Google Scholar]
  18. M. A. Zaks, X. Sailer, L. Schimansky-Geier, A. Neiman, Noise induced complexity: from subthreshold oscillations to spiking in coupled excitable systems. Chaos, 15 (2005), 026117. [CrossRef] [MathSciNet] [Google Scholar]
  19. A. B. Zisook. Universal effects of dissipation in two-dimensional mappings. Phys. Rev. A, 24 (1981), 1640–1642. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.