Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 1, 2011
Instability and patterns. Issue dedicated to the memory of A. Golovin
Page(s) 188 - 208
DOI https://doi.org/10.1051/mmnp/20116110
Published online 09 June 2010
  1. D. Casini, G. D’Alessandro, A. Politi. Soft turbulence in multimode lasers. Phys. Rev. A, 55 (1997), 751–760. [CrossRef] [Google Scholar]
  2. S. Chávez Cerda, S.B. Cavalcanti, J.M. Hickmann. A variational approach of nonlinear dissipative pulse propagation. Eur. Phys. J. D, 1 (1998), 313–316. [CrossRef] [EDP Sciences] [Google Scholar]
  3. P. Coullet, S. Fauve. Propagative phase dynamics for systems with Galilean invariance. Phys. Rev. Lett., 55 (1985), 2857–2859. [CrossRef] [PubMed] [Google Scholar]
  4. P. Coullet, G. Iooss. Instabilities of one-dimensional cellular patterns. Phys. Rev. Lett., 64 (1990), 866–869. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  5. S.M. Cox, P.C. Matthews. Instability and localisation of patterns due to a conserved quantity. Physica D, 175 (2003), 196–219. [CrossRef] [MathSciNet] [Google Scholar]
  6. A.A. Golovin, S.H. Davis, P.W. Voorhees. Self-organization of quantum dots in epitaxially strained solid films. Phys. Rev. E, 68 (2003), 056203. [CrossRef] [Google Scholar]
  7. A.A. Golovin, Y. Kanevsky, A.A. Nepomnyashchy. Feedback control of subcritical Turing instability with zero mode. Phys. Rev. E, 79 (2009), 046218. [CrossRef] [MathSciNet] [Google Scholar]
  8. A.A. Golovin, A.A. Nepomnyashchy. Feedback control of subcritical oscillatory instabilities. Phys. Rev. E, 73 (2006), 046212. [CrossRef] [MathSciNet] [Google Scholar]
  9. A.A. Golovin, A.A. Nepomnyashchy, L.M. Pismen. Interaction between short-scale Marangoni convection and long-scale deformational instability. Phys. Fluids, 6 (1994), 34–47. [CrossRef] [MathSciNet] [Google Scholar]
  10. A.A. Golovin, A.A. Nepomnyashchy, L.M. Pismen. Nonlinear evolution and secondary instabilities of Marangoni convection in a liquid-gas system with deformable interface. J. Fluid Mech., 341 (1997), 317–341. [CrossRef] [MathSciNet] [Google Scholar]
  11. Y. Kanevsky, A.A. Nepomnyashchy. Stability and nonlinear dynamics of solitary waves generated by subcritical oscillatory instability under the action of feedback control. Phys. Rev. E, 76 (2007), 066305. [CrossRef] [MathSciNet] [Google Scholar]
  12. Y. Kanevsky, A.A. Nepomnyashchy. Dynamics of solitary waves generated by subcritical instabiity under the action of delayed feedback control. Physica D, (2009), DOI: 10.1016/j.physd.2009.10.007. [Google Scholar]
  13. N. Komarova, A.C. Newell. Nonlinear dynamics of sandbanks and sandwaves. J. Fluid Mech., 415 (2000), 285–321. [CrossRef] [MathSciNet] [Google Scholar]
  14. B.A. Malomed. Variational methods in nonlinear fiber optics and related fields. Progress in Optics, 43 (2002), 69–191. [Google Scholar]
  15. P.C. Matthews, S.M. Cox. One-dimensional pattern formation with Galilean invariance near a stationary bifurcation. Phys. Rev. E, 62 (2000), R1473–R1476. [CrossRef] [Google Scholar]
  16. P.C. Matthews, S.M. Cox. Pattern formation with a conservation law. Nonlinearity, 13 (2000), 1293–1320. [CrossRef] [MathSciNet] [Google Scholar]
  17. A.A. Nepomnyashchy, A.A. Golovin, V. Gubareva, V. Panfilov. Global feedback control of a long-wave morphological instability. Physica D, 199 (2004), 61–81. [CrossRef] [MathSciNet] [Google Scholar]
  18. A.C. Newell, J.A. Whitehead. Finite amplitude convection. J. Fluid Mech., 38 (1969), 279–303. [CrossRef] [Google Scholar]
  19. B.Y. Rubinstein, A.A. Nepomnyashchy, A.A. Golovin. Stability of localized solutions in a subcritically unstable pattern-forming system under a global delayed control. Phys. Rev. E, 75 (2007), 046213. [CrossRef] [MathSciNet] [Google Scholar]
  20. W. Schöpf, L. Kramer. Small-amplitude periodic and chaotic solutions of the complex Ginzburg-Landau equation for a subcritical bifurcation. Phys. Rev. Lett., 66 (1991), 2316–2319. [CrossRef] [PubMed] [Google Scholar]
  21. M. Sheintuch, O. Nekhamkina. Analysis of front interaction and control in stationary patterns of reaction-diffusion systems. Phys. Rev. E, 63 (2001), 056120. [CrossRef] [Google Scholar]
  22. V. Skarka, N.B. Aleksić. Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations. Phys. Rev. Lett., 96 (2006), 013903. [CrossRef] [PubMed] [Google Scholar]
  23. L.G. Stanton, A.A. Golovin. Global feedback control for pattern-forming systems. Phys. Rev. E, 76 (2007), 036210. [CrossRef] [MathSciNet] [Google Scholar]
  24. E.N. Tsoy, A. Ankiewicz, N. Akhmediev. Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation. Phys. Rev. E, 73 (2006), 036621. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.