Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 1, 2011
Instability and patterns. Issue dedicated to the memory of A. Golovin
Page(s) 3 - 16
Published online 09 June 2010
  1. K. K. Andreev, S. V. Chuiko. Transition of the burning of explosives into an explosion. Russ. J. Phys. Chem., 37 (1963), 695–699. [Google Scholar]
  2. K. K. Andreev, A. F. Belyaev. Theory of Explosive Substances. Transi., US Department of Commerce Report AD-643597 (1966). [Google Scholar]
  3. A. Bayliss, B. Matkowsky. Two Routes to Chaos in Condensed Phase Combustion. SIAM J. Appl. Math., 50 (1990), 437–59. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. F. Belyaev, V. K. Bobolev, A. I. Korotkov, A. A. Sulimov, S. V. Chuiko. Transition from Deflagration to Detonation in Condensed Phases. Israel Program for Scientific Translations, Jerusalem (1975). [Google Scholar]
  5. T. B. Benjamin. Effects of a flexible boundary on hydrodynamic stability. J. Fluid Mechanics, 9 (1960), 513–532. [Google Scholar]
  6. I. Brailovsky, M. Frankel, G. Sivashinsky. Galloping and spinning modes of subsonic detonation. Combust. Theory Modelling, 4 (2000), 47–60. [CrossRef] [Google Scholar]
  7. P. Clavin. Theory of gaseous detonations. Chaos, 14 (2004), 825–38. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. P. Dimitriou, J. Puszynski, V. Hlavacek. On the Dynamics of Equations Describing Gasless Combustion in Condensed Systems. Combsut. Sci. Technol., 68 (1989), 101–11. [CrossRef] [Google Scholar]
  9. V. F. Dubovitskii, V. G. Korostelev, A. I. Korotkov, Yu. V. Frolov, A. N. Firsov, K. G. Shkadinsky, S. V. Khomik. Burning of porous condensed systems and powders. Combust.Expl. Shock Waves, 10 (1974), 730–736. [CrossRef] [Google Scholar]
  10. B. S. Ermolaev, A. A. Sulimov, V. A. Foteenkov, V. E.Khrapovskii, A. I. Korotkov, A. A. Borisov. Nature of and laws governing quasi-steady-state pulsed convective combustion. Combust. Expl. Shock Waves, 16 (1980), 266–274. [CrossRef] [Google Scholar]
  11. S. Ergun. Fluid flow through packed columnes. Chem. Engr. Prog. 48 (1952), 89–94. [Google Scholar]
  12. R. A. Fifer, F. F. Cole. Transition from laminar burning for porous crystalline explosives. Proc. Seventh Symp. (Int.) on Detonation, 7 (1981), 164–174. [Google Scholar]
  13. M. Frankel, V. Roytburd, G. Sivashinsky. Complex dynamics generated by a sharp interface model of self-propagating high-temperature synthesis. Combust. Theory Modelling, 2 (1998), 479–96. [CrossRef] [Google Scholar]
  14. L. Kagan, G. Sivashinsky. A high-porosity limit for the transition from conductive to convective burning in gas-permeable explosives. Combust.Flame, 157 (2010), 357–362. [CrossRef] [Google Scholar]
  15. S. B. Margolis. The transition to nonsteady deflagration in gasless combustion. Prog. Energy Combust. Sci., 17 (1991), 135–62. [CrossRef] [Google Scholar]
  16. A. M. Telengator, S. B. Margolis, F. A. Williams. Stability of Quasi-Steady Deflagrations in Confined Porous Energetic Materials. Combust. Sci.Technol., 160 (2000), 259–316. [CrossRef] [Google Scholar]
  17. A. M. Telengator, F. A. Williams, S. B. Margolis. Finite-rate interphase heat-transfer effects on multiphase burning in confined porous propellants. Combust. Sci. Technol., 178 (2006), 1685–1720. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.