Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 1, 2011
Instability and patterns. Issue dedicated to the memory of A. Golovin
Page(s) 17 - 47
Published online 09 June 2010
  1. B. Ö. Arnarson, J. T. Willits. Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity. Phys. Fluids, 10 (1998), No. 1, 1324–1328. [CrossRef] [Google Scholar]
  2. M. Bose, P. R. Nott, V. Kumaran. Excluded-volume attraction in vibrated granular mixtures. Europhys. Lett., 68 (2004), No. 4, 508–514. [CrossRef] [Google Scholar]
  3. J. J. Brey, M. J. Ruiz-Montero, F. Moreno. Hydrodynamics of an open vibrated granular system. Phys. Rev. E, 63 (2001), No. 6, 061305. [CrossRef] [Google Scholar]
  4. J. J. Brey, M. J. Ruiz-Montero, F. Moreno. Energy partition and segregation for an intruder in a vibrated granular system under gravity. Phys. Rev. Lett., 95 (2005), No. 9, 098001. [CrossRef] [PubMed] [Google Scholar]
  5. N. V. Brillantov, T. Pöschel. Breakdown of the Sonine expansion for the velocity distribution of granular gases. Europhys. Lett., 74 (2006), No. 3, 424–430. [CrossRef] [Google Scholar]
  6. R. Brito, H. Enriquez, S. Godoy, R. Soto. Segregation induced by inelasticity in a vibrofluidized granular mixture. Phys. Rev. E, 77 (2008), No. 6, 061301. [CrossRef] [Google Scholar]
  7. D. Brone, F. J. Muzzio. Size segregation in vibrated granular systems: A reversible process. Phys. Rev. E, 56 (1997), No. 1, 1059–1063. [CrossRef] [Google Scholar]
  8. S. Chapman and T. G. Cowling. The mathematical Theory of Nonuniform Gases. Cambridge Univ. Press, London, 1970. [Google Scholar]
  9. W. Cooke, S. Warr, J. M. Huntley, R. C. Ball. Particle size segregation in a two-dimensional bed undergoing vertical vibration. Phys. Rev. E, 53 (1996), No. 3, 2812–2822. [CrossRef] [Google Scholar]
  10. S. R. de Groot and P. Mazur. Non-Equilibrium Thermodynamics. North-Holland, Amsterdam, 1969. [Google Scholar]
  11. S. E. Esipov, T. Pöschel. The granular phase diagram. J. Stat. Phys., 86 (1997), No. 5-6, 1385–1395. [CrossRef] [Google Scholar]
  12. Z. Farkas, F. Szalai, D. E. Wolf, T. Vicsek. Segregation of binary mixtures by a ratchet mechanism. Phys. Rev. E, 65 (2002), No. 2, 022301. [CrossRef] [Google Scholar]
  13. V. Garzó. Segregation in granular binary mixtures: Thermal diffusion. Europhys. Lett., 75 (2006), No. 4, 521–527. [CrossRef] [Google Scholar]
  14. V. Garzó. Brazil-nut effect versus reverse Brazil-nut effect in a moderately dense granular fluid. Phys. Rev. E, 78 (2008), No. 2, 020301. [CrossRef] [Google Scholar]
  15. V. Garzó, J. W. Dufty. Hydrodynamics for a granular binary mixture at low density. Phys Fluids, 14 (2002), No. 4, 1476–14902. [Google Scholar]
  16. V. Garzó, F. V. Reyes, J. M. Montanero. Modified Sonine approximation for granular binary mixtures. J Fluid Mech., 623 (2009), 387–411. [Google Scholar]
  17. I. Goldhirsch. Rapid granular flows. Annu Rev Fluid Mech., 35 (2003), 267–293. [Google Scholar]
  18. I. Goldhirsch, D. Ronis. Theory of thermophoresis I: General considerations and mode coupling analysis. Phys Rev. A, 27 (1983), No. 3, 1616–1634. [CrossRef] [Google Scholar]
  19. I. Goldhirsch, D. Ronis. Theory of thermophoresis II: Low-density behavior. Phys Rev. A, 27 (1983), No. 3, 1635–1656. [Google Scholar]
  20. D. C. Hong, P. V. Quinn, S. Luding. The reverse Brazil nut problem: Competition between percolation and condensation. Phys Rev Lett., 86 (2001), No. 15, 3423–3426. [Google Scholar]
  21. S. S. Hsiau, M. L. Hunt. Granular thermal diffusion in flows of binary-sized mixtures. Acta Mech., 114 (1996), No. 1-4, 121–137. [CrossRef] [Google Scholar]
  22. H. M. Jaeger, S. R. Nagel and R. P. Behringer. Granular solids, liquids, and gases. Rev Mod Phys., 68 (1996), No. 4, 1259–1273. [Google Scholar]
  23. J. T. Jenkins, F. Mancini. Kinetic theory for binary mixtures of smooth nearly elastic spheres. Phys Fluids A, 1 (1989), No. 12, 2050–2059. [Google Scholar]
  24. J. T. Jenkins, D. K. Yoon. Segregation in binary mixture under gravity. Phys Rev Lett., 88 (2002), No. 19, 194304. [Google Scholar]
  25. J. M. Kincaid, E. G. D. Cohen, M. Lopez de Haro. The Enskog theory for multicomponent mixtures. iv. thermal diffusion. J Chem Phys., 86 (1987), No. 2, 963–975. [CrossRef] [Google Scholar]
  26. J. B. Knight, E. E. Ehrlich, V. Y. Kuperman, J. K. Flint, H. M. Jaeger, S. R. Nagel. Experimental study of granular convection. Phys Rev. E, 54 (1996), No. 5, 5726–5738. [Google Scholar]
  27. J. B. Knight, H. M. Jaeger, S. R. Nagel. Vibration-induced size separation in granular media, No. 4, The convection connection. Phys Rev Lett., 70 (1993), No. 24, 3728–3731. [Google Scholar]
  28. L. Kondic, R. R. Hartley, S. G. K. Tennakoon, B. Painter, R. P. Behringer. Segregation by friction. Europhys Lett., 61 (2003), No. 6, 742–748. [CrossRef] [Google Scholar]
  29. A. Kudrolli. Size separation in vibrated granular matter. Reports on Progress in Physics., 67 (2004), No. 3, 209–247. [Google Scholar]
  30. L. D. Landau, E. M. Lifshitz. Fluid Mechanics. Pergamon, London, 1959. [Google Scholar]
  31. M. E. Mobius, X. Cheng, P. Eshuis, S. R. Karczmar, G. S. Nagel, H. M. Jaeger. Effect of air on granular size separation in a vibrated granular bed. Phys Rev. E, 72 (2005), No. 1, 011304. [Google Scholar]
  32. S. H. Noskowicz, O. Bar-Lev, D. Serero, I. Goldhirsch. Computer-aided kinetic theory and granular gases. Europhys Lett., 79 (2007), No. 6, 60001. [Google Scholar]
  33. J. M. Ottino, D. V. Khakhar. Mixing and segregation of granular materials. Annu Rev Fluid Mech., 32 (2000), 55–91. [CrossRef] [Google Scholar]
  34. T. Pöschel, N. V. Brillantov, A. Formella. Impact of high-energy tails on granular gas properties. Phys Rev. E, 74 (2006), No. 4, 041302. [CrossRef] [Google Scholar]
  35. T. Pöschel, H. J. Herrmann. Size segregation and convection. Europhys Lett., 29 (1995), No. 2, 123–128. [Google Scholar]
  36. D. C. Rapaport. Mechanism for granular segregation. Phys Rev. E, 64 (2001), No. 6, 061304. [CrossRef] [Google Scholar]
  37. P. M. Reis, T. Mullin. Granular segregation as a critical phenomenon. Phys Rev Lett., 89 (2002), No. 24, 244301. [Google Scholar]
  38. A. Rosato, K. J. Strandburg, F. Prinz, R. H. Swendsen. Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys Rev Lett., 58 (1987), No. 10, 1038–1040. [Google Scholar]
  39. M. Schröter, S. Ulrich, J. Keft, J. B. Swift, H. L. Swinney. Mechanism in the size segregation of a binary granular mixture. Phys Rev. E, 74 (2006), No. 1, 011307. [CrossRef] [Google Scholar]
  40. N. Sela, I. Goldhirsch. Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J Fluid Mech., 361 (1998), 41–74. [Google Scholar]
  41. D. Serero, S. H. Noskowicz, and I. Tan, M. L. Goldhirsch. Layering effects in vertically vibrated systems., Eur. Phys. J. E (2009). [Google Scholar]
  42. D. Serero. Kinetic Theory of Granular Gas Mixtures. PhD thesis, Tel Aviv University, 2009. [Google Scholar]
  43. D. Serero, I. Goldhirsch, S. H. Noskowicz, M. L. Tan. Hydrodynamics of granular gases and granular gas mixtures. J Fluid Mech., 554 (2006), 237–258. [Google Scholar]
  44. D. Serero, S. H. Noskowicz, I. Goldhirsch. Exact versus mean field solutions for granular gas mixtures. Gran. Matt., 10 (2007), No. 1, 37–46. [CrossRef] [Google Scholar]
  45. T. Shinbrot, F. J. Muzzio. Reverse buoyancy in shaken granular beds. Phys Rev Lett., 81 (1998), No. 20, 4365–4368. [Google Scholar]
  46. T. Shinbrot, F. J. Muzzio. Nonequilibrium patterns in granular mixing and segregation. "Physics Today", 53 (2000), No. 3, 25–30. [CrossRef] [Google Scholar]
  47. L. Trujillo, M. Alam, H. J. Herrmann. Segregation in a fluidized binary granular mixture: competition between buoyancy and geometric force. Europhys Lett., 64 (2003), No. 2, 190–196. [Google Scholar]
  48. S. Ulrich, M. Schröter, H. L. Swinney. Influence of friction on granular segregation. Phys Rev. E, 76 (2007), No. 4, 042301. [CrossRef] [Google Scholar]
  49. H. Viswanathan, R. D. Wildman, J. M. Huntley, T. W. Martin. Comparison of kinetic theory predictions with experimental results for a vibrated three-dimensional granular bed. Phys Fluids, 18 (2006), No. 11, 113302. [Google Scholar]
  50. R. D. Wildman, J. T. Jenkins, P. E. Krouskop, J. Talbot. A comparison of the predictions of a simple kinetic theory with experimental and numerical results for a vibrated granular bed consisting of nearly elastic particles. Phys Fluids, 18 (2006), No. 7, 073301. [CrossRef] [Google Scholar]
  51. D. K. Yoon, J. T. Jenkins. The influence of different species’ granular temperatures on segregation in a binary mixture of dissipative grains. Phys Fluids, 18 (2006), No. 7, 073303. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.