Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 1, 2011
Instability and patterns. Issue dedicated to the memory of A. Golovin
Page(s) 17 - 47
DOI https://doi.org/10.1051/mmnp/20116102
Published online 09 June 2010
  1. B. Ö. Arnarson, J. T. Willits. Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity. Phys. Fluids, 10 (1998), No. 1, 1324–1328. [CrossRef]
  2. M. Bose, P. R. Nott, V. Kumaran. Excluded-volume attraction in vibrated granular mixtures. Europhys. Lett., 68 (2004), No. 4, 508–514. [CrossRef]
  3. J. J. Brey, M. J. Ruiz-Montero, F. Moreno. Hydrodynamics of an open vibrated granular system. Phys. Rev. E, 63 (2001), No. 6, 061305. [CrossRef]
  4. J. J. Brey, M. J. Ruiz-Montero, F. Moreno. Energy partition and segregation for an intruder in a vibrated granular system under gravity. Phys. Rev. Lett., 95 (2005), No. 9, 098001. [CrossRef] [PubMed]
  5. N. V. Brillantov, T. Pöschel. Breakdown of the Sonine expansion for the velocity distribution of granular gases. Europhys. Lett., 74 (2006), No. 3, 424–430. [CrossRef]
  6. R. Brito, H. Enriquez, S. Godoy, R. Soto. Segregation induced by inelasticity in a vibrofluidized granular mixture. Phys. Rev. E, 77 (2008), No. 6, 061301. [CrossRef]
  7. D. Brone, F. J. Muzzio. Size segregation in vibrated granular systems: A reversible process. Phys. Rev. E, 56 (1997), No. 1, 1059–1063. [CrossRef]
  8. S. Chapman and T. G. Cowling. The mathematical Theory of Nonuniform Gases. Cambridge Univ. Press, London, 1970.
  9. W. Cooke, S. Warr, J. M. Huntley, R. C. Ball. Particle size segregation in a two-dimensional bed undergoing vertical vibration. Phys. Rev. E, 53 (1996), No. 3, 2812–2822. [CrossRef]
  10. S. R. de Groot and P. Mazur. Non-Equilibrium Thermodynamics. North-Holland, Amsterdam, 1969.
  11. S. E. Esipov, T. Pöschel. The granular phase diagram. J. Stat. Phys., 86 (1997), No. 5-6, 1385–1395. [CrossRef]
  12. Z. Farkas, F. Szalai, D. E. Wolf, T. Vicsek. Segregation of binary mixtures by a ratchet mechanism. Phys. Rev. E, 65 (2002), No. 2, 022301. [CrossRef]
  13. V. Garzó. Segregation in granular binary mixtures: Thermal diffusion. Europhys. Lett., 75 (2006), No. 4, 521–527. [CrossRef]
  14. V. Garzó. Brazil-nut effect versus reverse Brazil-nut effect in a moderately dense granular fluid. Phys. Rev. E, 78 (2008), No. 2, 020301. [CrossRef]
  15. V. Garzó, J. W. Dufty. Hydrodynamics for a granular binary mixture at low density. Phys Fluids, 14 (2002), No. 4, 1476–14902. [CrossRef]
  16. V. Garzó, F. V. Reyes, J. M. Montanero. Modified Sonine approximation for granular binary mixtures. J Fluid Mech., 623 (2009), 387–411. [CrossRef] [MathSciNet]
  17. I. Goldhirsch. Rapid granular flows. Annu Rev Fluid Mech., 35 (2003), 267–293. [CrossRef]
  18. I. Goldhirsch, D. Ronis. Theory of thermophoresis I: General considerations and mode coupling analysis. Phys Rev. A, 27 (1983), No. 3, 1616–1634. [CrossRef]
  19. I. Goldhirsch, D. Ronis. Theory of thermophoresis II: Low-density behavior. Phys Rev. A, 27 (1983), No. 3, 1635–1656. [CrossRef]
  20. D. C. Hong, P. V. Quinn, S. Luding. The reverse Brazil nut problem: Competition between percolation and condensation. Phys Rev Lett., 86 (2001), No. 15, 3423–3426. [CrossRef] [PubMed]
  21. S. S. Hsiau, M. L. Hunt. Granular thermal diffusion in flows of binary-sized mixtures. Acta Mech., 114 (1996), No. 1-4, 121–137. [CrossRef]
  22. H. M. Jaeger, S. R. Nagel and R. P. Behringer. Granular solids, liquids, and gases. Rev Mod Phys., 68 (1996), No. 4, 1259–1273. [CrossRef]
  23. J. T. Jenkins, F. Mancini. Kinetic theory for binary mixtures of smooth nearly elastic spheres. Phys Fluids A, 1 (1989), No. 12, 2050–2059. [CrossRef] [MathSciNet]
  24. J. T. Jenkins, D. K. Yoon. Segregation in binary mixture under gravity. Phys Rev Lett., 88 (2002), No. 19, 194304.
  25. J. M. Kincaid, E. G. D. Cohen, M. Lopez de Haro. The Enskog theory for multicomponent mixtures. iv. thermal diffusion. J Chem Phys., 86 (1987), No. 2, 963–975. [CrossRef]
  26. J. B. Knight, E. E. Ehrlich, V. Y. Kuperman, J. K. Flint, H. M. Jaeger, S. R. Nagel. Experimental study of granular convection. Phys Rev. E, 54 (1996), No. 5, 5726–5738. [CrossRef]
  27. J. B. Knight, H. M. Jaeger, S. R. Nagel. Vibration-induced size separation in granular media, No. 4, The convection connection. Phys Rev Lett., 70 (1993), No. 24, 3728–3731. [NASA ADS] [CrossRef] [PubMed]
  28. L. Kondic, R. R. Hartley, S. G. K. Tennakoon, B. Painter, R. P. Behringer. Segregation by friction. Europhys Lett., 61 (2003), No. 6, 742–748. [CrossRef]
  29. A. Kudrolli. Size separation in vibrated granular matter. Reports on Progress in Physics., 67 (2004), No. 3, 209–247. [CrossRef]
  30. L. D. Landau, E. M. Lifshitz. Fluid Mechanics. Pergamon, London, 1959.
  31. M. E. Mobius, X. Cheng, P. Eshuis, S. R. Karczmar, G. S. Nagel, H. M. Jaeger. Effect of air on granular size separation in a vibrated granular bed. Phys Rev. E, 72 (2005), No. 1, 011304. [CrossRef]
  32. S. H. Noskowicz, O. Bar-Lev, D. Serero, I. Goldhirsch. Computer-aided kinetic theory and granular gases. Europhys Lett., 79 (2007), No. 6, 60001. [CrossRef] [MathSciNet]
  33. J. M. Ottino, D. V. Khakhar. Mixing and segregation of granular materials. Annu Rev Fluid Mech., 32 (2000), 55–91. [CrossRef]
  34. T. Pöschel, N. V. Brillantov, A. Formella. Impact of high-energy tails on granular gas properties. Phys Rev. E, 74 (2006), No. 4, 041302. [CrossRef]
  35. T. Pöschel, H. J. Herrmann. Size segregation and convection. Europhys Lett., 29 (1995), No. 2, 123–128. [CrossRef]
  36. D. C. Rapaport. Mechanism for granular segregation. Phys Rev. E, 64 (2001), No. 6, 061304. [CrossRef]
  37. P. M. Reis, T. Mullin. Granular segregation as a critical phenomenon. Phys Rev Lett., 89 (2002), No. 24, 244301. [CrossRef] [PubMed]
  38. A. Rosato, K. J. Strandburg, F. Prinz, R. H. Swendsen. Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys Rev Lett., 58 (1987), No. 10, 1038–1040. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  39. M. Schröter, S. Ulrich, J. Keft, J. B. Swift, H. L. Swinney. Mechanism in the size segregation of a binary granular mixture. Phys Rev. E, 74 (2006), No. 1, 011307. [CrossRef]
  40. N. Sela, I. Goldhirsch. Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J Fluid Mech., 361 (1998), 41–74. [CrossRef] [MathSciNet]
  41. D. Serero, S. H. Noskowicz, and I. Tan, M. L. Goldhirsch. Layering effects in vertically vibrated systems., Eur. Phys. J. E (2009).
  42. D. Serero. Kinetic Theory of Granular Gas Mixtures. PhD thesis, Tel Aviv University, 2009.
  43. D. Serero, I. Goldhirsch, S. H. Noskowicz, M. L. Tan. Hydrodynamics of granular gases and granular gas mixtures. J Fluid Mech., 554 (2006), 237–258. [CrossRef] [MathSciNet]
  44. D. Serero, S. H. Noskowicz, I. Goldhirsch. Exact versus mean field solutions for granular gas mixtures. Gran. Matt., 10 (2007), No. 1, 37–46. [CrossRef]
  45. T. Shinbrot, F. J. Muzzio. Reverse buoyancy in shaken granular beds. Phys Rev Lett., 81 (1998), No. 20, 4365–4368. [CrossRef]
  46. T. Shinbrot, F. J. Muzzio. Nonequilibrium patterns in granular mixing and segregation. "Physics Today", 53 (2000), No. 3, 25–30. [CrossRef]
  47. L. Trujillo, M. Alam, H. J. Herrmann. Segregation in a fluidized binary granular mixture: competition between buoyancy and geometric force. Europhys Lett., 64 (2003), No. 2, 190–196. [CrossRef]
  48. S. Ulrich, M. Schröter, H. L. Swinney. Influence of friction on granular segregation. Phys Rev. E, 76 (2007), No. 4, 042301. [CrossRef]
  49. H. Viswanathan, R. D. Wildman, J. M. Huntley, T. W. Martin. Comparison of kinetic theory predictions with experimental results for a vibrated three-dimensional granular bed. Phys Fluids, 18 (2006), No. 11, 113302. [CrossRef]
  50. R. D. Wildman, J. T. Jenkins, P. E. Krouskop, J. Talbot. A comparison of the predictions of a simple kinetic theory with experimental and numerical results for a vibrated granular bed consisting of nearly elastic particles. Phys Fluids, 18 (2006), No. 7, 073301. [CrossRef]
  51. D. K. Yoon, J. T. Jenkins. The influence of different species’ granular temperatures on segregation in a binary mixture of dissipative grains. Phys Fluids, 18 (2006), No. 7, 073303. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.