Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 2, 2011
Modelling of plant growth
Page(s) 1 - 53
Published online 11 October 2010
  1. S.H.Howell. Molecular Genetics of Plant Development. Cambridge University Press, Cambridge, 2000.
  2. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology of the Cell (5th ed.). Garland Science, New York, 2008.
  3. TA. Steeves, and IM. Sussex. Patterns in Plant Development. Cambridge University Press, New York, 1989.
  4. M. Aida, T. Ishida, M. Tasaka. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development., 126 (1999), No. 8, 1563-1570. [PubMed]
  5. M. Aida, T. Vernoux, M. Furutani, J. Traas, M. Tasaka. Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development., 129 (2002), 3965-3974. [PubMed]
  6. M. Aida, M. Tasak. Morphogenesis and patterning at the organ boundaries in the higher plant shoot apex. Plant Mol. Biol., 60 (2006), No. 6, 915-928. [CrossRef] [PubMed]
  7. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology of the Cell (5th ed.). Garland Science, New York, 2008.
  8. M.J. Aukerman, and H. Sakai. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell, 15 (2003), 2730-2741. [CrossRef] [PubMed]
  9. D.P. Bartel. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116 (2004), 281-297. [CrossRef] [PubMed]
  10. M.K. Barton, R.S. Poethig. Formation of the shoot apical meristem in Arabidopsis thaliana - an analysis of development in the wild type and in the shoot meristemless mutant. Development, 119 (1993), 823-831.
  11. T.B. Batygina. Embryoidogeny. In: T.B. Batygina [ed.], Embryology of flowering plants. Terminology and concepts.vol.2, 502-509. Science Publishers, Inc., Enfield (NH), Plymouth, 2006.
  12. T.B. Batygina, V.E. Vasileva. Plant reproduction. Sankt-Petersburg University Press, Sankt-Petersburg, 2002. (In Russian).
  13. E. Benkova, M. Michniewicz, M. Sauer, T. Teichmann, D. Seifertova, G. Jürgens, J. Friml. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115 (2003), 591-602. [CrossRef] [PubMed]
  14. M.J. Bennett, A. Marchant, H.G. Green, S.T. May, S.P. Ward, P.A. Millner, A.R. Walker, B. Schulz, K.A. Feldmann. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science, 273 (1996), 948-950. [CrossRef] [PubMed]
  15. T. Berleth, G. Jurgens. The role of monopteros gene in organizing the basal body regionof the Arabidopsis embryo. Development, 118 (1993), 575-587.
  16. N. Bessonov, N. Morozova, V. Volpert. Modeling of branching patterns in plants. Bull Math Biol., Apr; 70 (2008), No. 3, 868-89. [CrossRef] [MathSciNet] [PubMed]
  17. I. Blilou, J. Xu, M. Wildwater, V. Willemsen, I. Paponov, J. Friml, R. Heidstra, M. Aida, K. K. Palme, B. Scheres. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 433 (2005), 39-44. [CrossRef] [PubMed]
  18. W. Bloom. Cellular differentiation and tissue culture. Physiol. Rev., 17 (1937), 589-617.
  19. N.H. Boke. Leaf and areole development in Coryphantha. Am. J. Bot. 39 (1952), 134-145. [CrossRef]
  20. L. Borisjuk, H. Rolletschek, U. Wobus, H. Weber. Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds. J. Exp. Biol., 54 (2003), 503-512.
  21. E. Boucheron, A. Guivarc’h, A. Azmi, W. Dewitte, H. Van Onckelen, D. Chriqui. Competency of Nicotiana tabacum L. stem tissues to dedifferentiate is associated with differential levels of cell cycle gene expression and endogenous cytokinins. Planta, 215 (2002), 267-278. [CrossRef] [PubMed]
  22. J.L. Bowman, D.R. Smyth, E.M. Meyerowitz. Genetic interactions among floral homeotic genes of Arabidopsis. Development, 112 (1991), 1-20. [PubMed]
  23. U. Brand, J.C. Fletcher, M. Hobe, E.M. Meyerowitz, R. Simon. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 289 (2000), 617-619. [CrossRef] [PubMed]
  24. V.B. Brukhin. Paeonia embryo development in vivo and in vitro. PhD thesis, Komarov Botanical Institute, Russian Academy of Sciences, St.Petersburg, 1993.
  25. V.B. Brukhin, T.B. Batygina. Embryo culture and somatic embryogenesis in culture of Paeonia anomala L. Phytomorphology, 44 (1994), No. 3&4, 151-157.
  26. M.E. Byrne, C.A. Kidner, R.A. Martienssen. Plant stem cells: divergent pathways and common themes in shoots and roots. Current Opinion in Genetics and Development, 13 (2003), 551-557. [CrossRef]
  27. I. Casimiro, A. Marchant, R.P. Bhalerao, T. Beeckman, S. Dhooge, R. Swarup, N. Graham, D. Inze, G. Sandberg, P.J. Casero, M. Bennett. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell, 13 (2001), 843-852. [CrossRef] [PubMed]
  28. A.M. Chaudhury, L. Ming, C. Miller, S. Craig, E.S. Dennis, W.J. Peacock. Fertilisation-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA, 94 (1997), 4223-4228. [CrossRef]
  29. S.E. Clark, R.W. Williams, E.M. Meyerowitz. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 89 (1997), 575-585. [CrossRef] [PubMed]
  30. F.A. Clowes. Apical Meristems. Davis Company, Philadelphia, 1961.
  31. JM. Cock, S. McCormick. A Large Family of Genes That Share Homology with CLAVATA3. Plant Physiology, 126 (2001), 939-942. [CrossRef] [PubMed]
  32. D.J. Cosgrove. Loosening of plant cell walls by expansins. Nature, 407 (2000), 321-326. [CrossRef] [PubMed]
  33. A. Delisle. The influence of auxin on secondary branching in two species of aster. Am. J. Bot., 24 (1937), 159-167. [CrossRef]
  34. P. Dhonukshe, H. Tanaka, T. Goh, K. Ebine, AP. M?h?nen, K. Prasad, I. Blilou, I.N. Geldner, J. Xu, T. Uemura, J. Chory, T. Ueda, A. Nakano, B. Scheres, J. Friml. Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature, 18 (2008), No. 456, 962-966. [CrossRef]
  35. S.J. Elledge. Cell Cycle Checkpoints: Preventing an Identity Crisis. Science, 274 (1996), 1664-1672. [CrossRef] [PubMed]
  36. K. Endrizzi, B. Moussian, A. Haecker, JZ. Levin, T. Laux. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J., 10 (1996), 967-979. [CrossRef] [PubMed]
  37. G.I. Evan, K.H. Vousden. Proliferation, cell cycle and apoptosis in cancer. Nature, 411 (2001), 342-348. [CrossRef] [PubMed]
  38. A.J. Fleming, S. McQueen-Mason, T. Mandel and C. Kuhlemeier. Induction of leaf primordia by the cell wall protein expansion. Science, 276, (1997), 1415-1418. [CrossRef]
  39. A.J. Fleming. Formation of primordia and phyllotaxy. Curr. Opin. Plant Biol., 8, (2005), 53-58. [CrossRef] [PubMed]
  40. J.C. Fletcher, U. Brand, M.P. Running, R. Simon, E.M. Meyerowitz. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 283 (1999), 1911-1914. [CrossRef] [PubMed]
  41. J.C. Fletcher. Shoot and Floral Meristem Maintenance in Arabidopsis. Annu. Rev. Plant Biol., 53 (2002), 45-66. [CrossRef] [PubMed]
  42. J. Friml, E. Benkova, I. Blilou, J. Wisniewska, T. Hamann, K. Ljung, S. Woody, G. Sandberg, B. Scheres, G. Jurgens, K. Palme. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell, 108 (2002), No. 5, 661-673. [CrossRef] [PubMed]
  43. J. Friml, A. Vieten, M. Sauer, D. Weijers, H. Schwarz, T. Hamann, R. Offringa, and G. Jurgens. Effluxdependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature, 426 (2003), 147-153. [CrossRef] [PubMed]
  44. L. Galweiler, C. Guan, A. Muller, E. Wisman, K. Mendgen, A. Yephremov, K. Palme. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science, 282 (1998), 2226-2230. [CrossRef] [PubMed]
  45. N. Geldner, J. Friml, Y.D. Stierhof, G. Jurgens, and K. Palme. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 413 (2001), 425-428. [CrossRef] [PubMed]
  46. N. Geldner, N. Anders, H. Wolters, J. Keicher, W. Kornberger, P. Muller, A. Delbarre, T. Ueda, A. Nakano, G. Jürgens. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell, 112 (2003), 219-230. [CrossRef] [PubMed]
  47. N. Geldner, S. Richter, A. Vieten, S. Marquardt, R.A. Torres-Ruiz, U. Mayer, G. Jürgens. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development, 131 (2004), No. 2, 389-400. [CrossRef] [PubMed]
  48. G. Grafi. How cells dedifferentiate: a lesson from plants. Dev Biol., 268 (2004), No. 1, 1-6. [CrossRef] [PubMed]
  49. T. Greb, O. Clarenz, E. Schafer, D. Muller, R. Herrero, G. Schmitz, K. There. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev., 17 (2003), No. 9, 1175-1187. [CrossRef] [PubMed]
  50. U. Grossniklaus, J.P. Vielle-Calzada, M.A. Hoeppner, W.B. Gagliano. Maternal control of embryogenesis by MEDEA, a Polycomb-group gene in Arabidopsis. Science 280 (1998), 446-450. [CrossRef] [PubMed]
  51. M.G. Heisler, C. Ohno, P. Das, P. Sieber, G.V. Reddy, J.A. Long, E.M. Meyerowitz. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol., 15 (2005), 1899-1911. [CrossRef] [PubMed]
  52. T. Hamann, E. Benkova, I. Baurle, M. Kientz, G. Jurgens. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev., 16 (2002), 1610-1615. [CrossRef] [PubMed]
  53. T. Hamann, U. Mayer, G. Jurgens. The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development, 126 (1999), 1387-1395. [PubMed]
  54. D. Hanahan, RA. Weinberg. The hallmarks of cancer. Cell, 100 (2000), 57-70. [CrossRef] [PubMed]
  55. C.S. Hardtke, T. Berleth. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J., 17 (1998), 1405-1411. [CrossRef] [PubMed]
  56. Y. Helariutta, H. Fukaki, J. Wysocka-Diller, K. Nakajima, J. Jung, G. Sena, M.T. Hauser, P.N. Benfey. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell, 101 (2000), 555-567. [CrossRef] [PubMed]
  57. S. Herwig, M. Strauss. The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis. Eur J Biochem., 246 (1997), No. 3, 581-601. [CrossRef] [PubMed]
  58. S.H. Howell. Molecular Genetics of Plant Development. Cambridge University Press, Cambridge, 2000.
  59. K. Himanen, E. Boucheron, S. Vanneste, J. de Almeida Engler, D. Inze, T. Beeckman. Auxinmediated cell cycle activation during early lateral root initiation. Plant Cell, 14 (2002), 2339-2351. [CrossRef] [PubMed]
  60. D. Jackson, B. Veit, S. Hake. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development, 120 (1994), 405-413.
  61. R.V. Jean. Phyllotaxis. A Systematic Study in Plant Morphogenesis. Cambridge University Press, New York, 1994.
  62. S. Jeong, A.E. Trotochaud, S.E. Clark. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell, 11 (1999), 1925-1934. [CrossRef] [PubMed]
  63. K. Jiang, Y.L. Meng, L.J. Feldman. Quiescent center formation inmaize roots is associated with an auxin-regulated oxidizing environment. Development, 130 (2003), 1429-1438. [CrossRef] [PubMed]
  64. V.. Jimenez. Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones. Rev Brasil de Fisio Vegl., 13 (2001), 196-22.
  65. H. Jonsson, M.G. Heisler, B.E. Shapiro, E.M. Meyerowitz, E. Mjolsness. An auxin-driven polarized transport model for phyllotaxis. Proc. Natl. Acad. Sci. USA, 103 (2006), No. 5, 1633-1638. [CrossRef] [PubMed]
  66. G. Jurgens, U. Mayer, R.A.T. Ruiz, T. Berleth, and S. Misera. Genetic analysis of pattern formation in the Arabidopsis embryo. Development Suppl., 91 (1991), No. 1, 27-3.
  67. G. Jurgens, N. Geldner. Protein secretion in plants: from the trans-Golgi network to the outer space. Traffic, 3 (2002), No. 9, 605-613. [CrossRef] [PubMed]
  68. H. Ishikawa, and M.L. Evans. Specialized zones of development in roots. Plant Physiol., 109 (1995), 725-727. [PubMed]
  69. N.M. Kerk, K. Jiang, L.J. Feldman. Auxin metabolism in the root apical meristem. Plant Physiol., 122 (2000), 925-932. [CrossRef] [PubMed]
  70. R.A. Kerstetter, S. Hake. Shoot Meristem Formation in Vegetative Development. Plant Cell., 7 (1997), 1001-1010. [CrossRef]
  71. A.M. Koltunow. Apomixis: embryo sacs and embryos formed without meiosis or fertilization in Ovules. Plant Cell, 5 (1993), 1425-1437. [CrossRef] [PubMed]
  72. P. Laufs, A. Peaucelle, H. Morin, and J. Traas. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 131 (2004), 4311-4322. [CrossRef] [PubMed]
  73. T. Laux, KFX. Mayer, J. Berger, G. Jurgens. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 122 (1996), 87-96. [PubMed]
  74. J. Law, S. Jacobsen. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics, 11 (2010), 204-220. [CrossRef] [PubMed]
  75. M. Lenhard, T. Laux. Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development, 130 (2003), 3163-3173. [CrossRef] [PubMed]
  76. P. Leon, J. Sheen. Sugar and hormone connections. Trends Plant Sci., 8 (2003), No. 3, 110-116. [CrossRef] [PubMed]
  77. C. Lincoln, J. Long, J. Yamaguchi, K. Serikawa, and S. Hake. A knotted1-like Homeobox Gene in Arabidopsis Is Expressed in the Vegetative Meristem and Dramatically Alters Leaf Morphology When Overexpressed in Transgenic Plants. Plant Cell, 6 (1994), 1859-1876. [CrossRef] [PubMed]
  78. Y. Liu and M.S. Rao. Transdifferentiation-fact or artifact. J. Cell. Biochem., 88 (2003), 29-40. [CrossRef] [PubMed]
  79. K. Ljung, AK. Hull, J. Celenza, M. Yamada, M. Estelle, J. Normanly, G. Sandberg. Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell, 4 (2005), 1090-104. [CrossRef] [PubMed]
  80. J.A. Long, E.I. Moan, J.I. Medford, M.K. Barton. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 379 (1996), 66-69. [CrossRef] [PubMed]
  81. J.U. Lohmann, R.L. Hong, M. Hobe, M.A. Busch, F. Parcy, R. Simon, D. Weigel. A Molecular Link between Stem Cell Regulation and Floral Patterning in Arabidopsis. Cell 105 (2001), 793-803. [CrossRef] [PubMed]
  82. J. Lopez-Bucio, E. Hernandez-Abreu, L. Sanchez-Calderon, MF. Nieto-Jacobo, J. Simpson, L. Herrera-Estrella. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol., 129 (2002), 244-256. [CrossRef] [PubMed]
  83. S. Lorenz, S. Tintelnot, R. Reski, E.L. Decker. Cyclin D-knockout uncouples developmental progression from sugar availability. Plant Mol. Biol., 53 (2003), 227-236. [CrossRef] [PubMed]
  84. P. Lu, R. Porat, J.A. Nadeau and S.D. O’Neill. Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homebox genes. Plant Cell, 8 (1996), 2155-2168. [CrossRef] [PubMed]
  85. J. Luck and H. Luck. Classification of Plant Meristems based on Cellworks (3D L-systems). The Maintainance and Comlexity of Their Cellular Patterns. In: Pattern Formation in Biology, Vision and Dynamics. Editors: A. Carbone, M. Gromov, P. Prusinkiewicz. 2000, 199-216.
  86. W. Lukowitz, U. Mayer, and G. Jürgens. Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell, 84 (1996), 61-71. [CrossRef] [PubMed]
  87. R.F. Lyndon. The Shoot Apical Meristem. Cambridge University Press, Cambridge. 1998.
  88. K. Lynn, A. Fernandez, M. Aida, J. Sedbrook, M. Tasaka, P. Masson, and MK. Barton. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development, 126 (1999), 469-481. [PubMed]
  89. Z. Magyar, L. De Veylder, A. Atanassova, L. Bako, D. Inze, L. Bogre. The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division. Plant Cell, 9 (2005), 2527-2541. [CrossRef] [PubMed]
  90. U. Mayer, G. Buettner, and G. Jürgens. Apical-basal pattern formation in the Arabidopsis embryo studies on the role of the gnom gene. Development, 117 (1993), 149-162.
  91. K.F. Mayer, H. Schoof, A. Haecker, M. Lenhard, G. Jürgens, T. Laux. Role of WUSCHEL in Regulating Stem Cell Fate in the Arabidopsis Shoot Meristem. Cell, 95 (1998), 805-815. [CrossRef] [PubMed]
  92. R.D. Meicenheimer. Changes in Epilobium phyllotaxy induced by N-1-naphthylphthalamic acid and a-4-chlorophenoxyisobutyric acid. Am. J. Bot., 68 (1981), 1139-1154. [CrossRef]
  93. Y. Mizukami, and H. Ma. Determination of Arabidopsis Floral Meristem identity by Agamous. The Plant Cell, 9 (1997), 393-408. [CrossRef] [PubMed]
  94. A.P. Mordhorst, K.J. Voerman, M.V. Hartog, E.A. Meijer, J. van Went, M. Koornneef, S.C. de Vries. Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics, 149 (1998), 549-563. [PubMed]
  95. J.B. Morel, C. Godon, P. Mourrain, C. Beclin, S. Boutet, F. Feuerbach, F. Proux, H. Vaucheret. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell, 14 (2002), 629-639. [CrossRef] [PubMed]
  96. J. Mravec, M. Kubes, A. Bielach, V. Gaykova, J. Petr?sek, P. Skupa, S. Chand, E. Benkov, E. Zaz?malov, J. Friml. Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development, 20 (2008), 3345-3354. [CrossRef]
  97. A. Muller, C. Guan, L. Gälweiler, P. Tänzler, P. Huijser, A. Marchant, G. Parry, M. Bennett, E. Wisman, K. Palme. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J., 17 (1998), No. 23, 6903-6911. [CrossRef] [PubMed]
  98. K. Nakajima, G. Sena, T. Naw., PN. Benfey. Intercellular movement of the putative transcription factor SHR in root patterning. Nature, 413 (2001), 307-311. [CrossRef] [PubMed]
  99. D.M. Nelson, X. Ye, C. Hall, H. Santos, T. Ma, GD. Kao, TJ. Yen, J.W. Harper, P.D. Adams. Coupling of DNA synthesis and histone synthesis in S phase independent of cyclin/cdk2 activity. Mol. Cell. Biol., 22 (2002), No. 21, 7459-7472. [CrossRef] [PubMed]
  100. E.A. Nigg. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays, 17 (1995), No. 6, 471-480. [CrossRef] [PubMed]
  101. S.J. Odelberg. Inducing cellular dedifferentiation: a potential method for enhancing endogenous regeneration in mammals. Semin. Cell Dev. Biol., 13 (2002), 335-343. [CrossRef] [PubMed]
  102. K. Okada, J. Ueda, M.K. Komaki, C.J. Bell, Y. Shimura. Requirement of the auxin polar transport system in early stages of arabidopsis floral bud formation. Plant Cell, 3, (1991), 677-684. [CrossRef] [PubMed]
  103. D.J. Osborne, MT. McManus. Hormones, Signals and Target Cells in Plant Development. Cambridge University Press, Cambridge, 2005.
  104. J.F. Palatnik, E. Allen, X. Wu, C. Schommer, R. Schwab, J.C. Carrington, and D. Weigel. Control of leaf morphogenesis by microRNAs. Nature, 425 (2003), 257-263. [CrossRef] [PubMed]
  105. S. Pien, J. Wyrzykowska, S. McQueen-Mason, C. Smart, A. Fleming. Local expression of expansion induces the entire process of leaf development and modifies leaf shape. Proc. Natl. Acad. Sci.USA, 98 (2001), 11812-11817. [CrossRef]
  106. R.S. Poethig, E.H.J. Coe and MM. Johri. Cell linage patterns in maize Zea mays embryogenesis a clonal analysis. Dev. Biol., 117 (1986), 392-404. [CrossRef]
  107. M.S. Rajeevan, A. Lang. Flower-bud formation in explants of photoperiodic and day-neutral Nicotiana biotypes and its bearing on the regulation of flower formation. Proc. Natl. Acad. Sci. USA, 90 (1993), No. 10, 4636-4640. [CrossRef]
  108. D. Reinhardt. Regulation of phyllotaxis. Int. J. Dev. Biol., 49 (2005), 539-546. [CrossRef] [PubMed]
  109. D. Reinhardt, F. Wittwer, T. Mandel, C. Kuhlemeier. Localized upregulation of a new expansion gene predicts the site of leaf formation in the tomato meristem. Plant Cell, 10 (1998), 1427-1437. [CrossRef] [PubMed]
  110. D. Reinhardt, T. Mandel, C. Kuhlemeier. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell, 12 (2000), 507-518. [CrossRef] [PubMed]
  111. D. Reinhardt, E.R. Pesce, P. Stieger, T. Mandel, K. Baltensperger, M. Bennett, J. Traas, J. Friml, C. Kuhlemeier. Regulation of phyllotaxis by polar auxin transport. Nature, 462 (2003), 255-260. [CrossRef] [PubMed]
  112. P.B. de Reuille, I. Bohn-Courseau, C. Godin, J. Traas. A protocol to analyse cellular dynamics during plant development. Plant J., 6 (2005), 1045-1053. [CrossRef]
  113. M.W. Rhoades, B.J. Reinhart, L.P. Lim, C.B. Burge, B. Bartel, DP. Bartel. Prediction of plant microRNA targets. Cell, 110 (2002), 513-520. [CrossRef] [PubMed]
  114. E. Rojo, V.K. Sharma, V. Kovaleva, N.V. Raikhel, J.C. Fletcher. CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell, 14 (2002), 969-977. [CrossRef] [PubMed]
  115. E. Rosche, D. Blackmore, M. Tegeder, T. Richardson, H. Schroeder, T.J. Higgins, W.B. Frommer, C.E. Offler, J.W. Patrick. Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons. Plant J., 30 (2002), No. 2, 165-175. [CrossRef] [PubMed]
  116. S. Sabatini, D. Beis, H. Wolkenfelt, J. Murfett, T. Guilfoyle, J. Malamy, P. Benfey, O. Leyser, N. Bechtold, P. Weisbeek, B. Scheres. An auxindependent distal organizer of pattern and polarity in the Arabidopsis root. Cell, 99 (1999), 463-472. [CrossRef] [PubMed]
  117. S. Sabatini, R. Heidstra, M. Wildwater, B. Scheres. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev., 17 (2003), 354-358. [CrossRef] [PubMed]
  118. B. Scheres, H. Wolkenfelt, V. Willemsen, M. Terlouw, E. Lawson, C. Dean, and P. Weisbeek. Embryonic origin of the Arabidopsis primary root and root meristem initials. Development, 120 (1994), No. 9, 2475-2487.
  119. G. Schindelman, A. Morikami, J. Jung, TI. Baskin, NC. Carpita, P. Derbyshire, MC. McCann, PN. Benfey. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev., 15 (2001), No. 9, 1115-1127. [CrossRef] [PubMed]
  120. H. Schoof, M. Lenhard, A. Haecker, K.F. Mayer, G. Jurgens, T. Laux. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 100 (2000), 635-644. [CrossRef] [PubMed]
  121. C.J. Sherr. Cancer cell cycles. Science, 274 (1996), 1672-1677. [CrossRef] [PubMed]
  122. F. Sitbon, C. Astot, A. Edlund, A. Crozier, G. Sandberg. The relative importance of tryptophan-dependent and tryptophan-independent biosynthesis of indole-3-acetic acid in tobacco during vegetative growth. Planta, 211 (2000), 715-721. [CrossRef] [PubMed]
  123. F. Skoog. Chemical regulation of growth in plants. In: E.J. Boell (Ed.), Dynamics of Growth Process. 1954, 148-182.
  124. F. Skoog, C.O. Miller. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol., 11 (1957), 118-140. [PubMed]
  125. R.S. Smith, S. Guyomarch, T. Mandel, D. Reinhardt, C. Kuhlemeier, P. Prusinkiewicz. A plausible model of phyllotaxis. Proc. Natl. Acad. Sci. USA, 103 (2006), No. 5, 1301-1306. [CrossRef] [PubMed]
  126. R. Soni, J.P. Carmichael, Z.H. Shah, J.A. Murray. A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell, 7 (1995), No. 1, 85-103. [CrossRef] [PubMed]
  127. E. Souer, A. van Houwelingen, D. Kloos, J. Mol, R. Koes. The NO APICAL MERISTEM gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 85 (1996), 159-170. [CrossRef] [PubMed]
  128. T.A. Steeves and I.M. Sussex. Patterns in Plant Development, Cambridge University Press, New York, 1989.
  129. T. Steinmann, N. Geldner, M. Grebe, S. Mangold, C.L. Jackson, S. Paris, L. G?lweiler, K. Palme, G. Jurgens. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science, 286 (1999), 316-318. [CrossRef] [PubMed]
  130. P.A. Stieger, D. Reinhardt, C. Kuhlemeier. The auxin influx carrier is essential for correct leaf positioning. Plant J., 32 (2002), 509-517. [CrossRef] [PubMed]
  131. P. Stirnberg, S.P. Chatfield, HM. Leyser. AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis. Plant Physiol., 121 (1999), No. 3, 839-847. [CrossRef] [PubMed]
  132. J.M. Stone, A.E. Trotochaud, J.C. Walker, S.E. Clark. Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions. Plant Physiol., 117 (1998), 1217-1225. [CrossRef] [PubMed]
  133. R. Swarup, J. Friml, A. Marchant, K. Ljung, G. Sandberg, K. Palme, M. Bennett. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev., 15 (2001), 2648-2653. [CrossRef] [PubMed]
  134. G. Tang. siRNA and miRNA: an insight into RISCs. Trends in Biochemical Sciences, 30 (2005), 106-114. [CrossRef] [PubMed]
  135. R.L. Taylor. The foliar embryos of Malaxias paludosa. Canad. J. Bot., 45 (1967), 1553-1556. [CrossRef]
  136. W.L. Teo, P. Kumar, C.J. Goh, and S. Swarup. The expression of Brostm, a KNOTTED1-like gene, marks the cell type and timing of in vitro shoot induction in Brassica oleracea. Plant Mol. Biol., 46 (2001), 567-580. [CrossRef] [PubMed]
  137. K.V. Thimann, F. Skoog. Studies on the Growth Hormone of Plants: III. The Inhibiting Action of the Growth Substance on Bud Development. Proc. Natl. Acad. Sci. USA, 7 (1933), 714-716. [CrossRef]
  138. E. Thingnaes, S. Torre, A. Ernstsen, R. Moe. Day and night temperature responses in Arabidopsis:effects on gibberellin and auxin content, cell size, morphology and flowering time. Ann. Bot.(Lond.), 92 (2003), 601-612. [CrossRef]
  139. R.A. Torres-Ruitz, A. Lohner, G. Jurgens. The GURKE gene gene is required for normal organization of the apical region in the Arabidopsis embryo. Plant J., 10 (1996), 1005-1016. [CrossRef] [PubMed]
  140. D. Tosh, J.M. Slack. How cells change their phenotype. Nat. Rev. Mol. Cell Biol., 3 (2002), 187-194. [CrossRef] [PubMed]
  141. J. Traas, I. Bohn-Courseau. Cell proliferation patterns at the shoot apical meristem. Curr. Opin. Plant Biol., 8 (2005), 587-592. [CrossRef] [PubMed]
  142. B.S. Treml, S. Winderl, R. Radykewicz, M. Herz, G. Schweizer, P. Hutzler, E. Glawischnig, R.A. Ruiz. The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development, 139 (2005), 4063-4074. [CrossRef]
  143. T. Vernoux, J. Kronenberger, O. Grandjean, P. Laufs, J. Traas. PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Development, 127 (2000), 5157-5165. [PubMed]
  144. C.W. Vroemen, A.P. Mordhorst, C. Albrecht, M.A. Kwaaitaal, SC. de Vries. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell, 7 (2003), 1563-1577. [CrossRef]
  145. Y. Wang, C. Liu, K Li, F. Sun, H. Hu, X. Li, Y. Zhao, C. Han, W. Zhang, Y. Duan, M. Liu. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol. Biol., 64 (2007), No. 6, 633-644. [CrossRef] [PubMed]
  146. F.M. Watt, B.L. Hogan. Out of Eden: stem cells and their niches. Science, 287 (2000), 1427-1430. [CrossRef] [PubMed]
  147. D. Weigel, G. Jürgens. Stem cells that make stems. Nature, 415 (2002), 751-754. [PubMed]
  148. F.W. Went. Plant growth under controlled conditions. III. Correlation between various physiological processes and growth in the tomato plant. Am. J. Bot., 31 (1944), No. 10, 597-618. [CrossRef]
  149. A.D. Whetton, G.J. Graham. Homing and mobilization in the stem cell niche. Trends Cell Biol., 9 (1999), 233-238. [CrossRef] [PubMed]
  150. I. Wilmut, N. Beaujean, P.A. de Sousa, A. Dinnyes, T.J. King, L.A. Paterson, D.N. Wells, L.E. Young. Somatic cell nuclear transfer. Nature, 419 (2002), 583-586. [CrossRef] [PubMed]
  151. R.W. Williams, J.M. Wilson, E.M. Meyerowitz. A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway. Proc. Natl. Acad. Sci. USA, 94 (1997), 10467-10472. [CrossRef]
  152. J. Wyrzykowska, S. Pien, W.H. Shen, AJ. Fleming. Manipulation of leaf shape by modulation of cell division. Development, 129 (2002), 957-964. [PubMed]
  153. J.W. Wysocka-Diller, Y. Helariutta, H. Fukaki, J.E. Malamy, P.N. Benfey. Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development, 127 (2000), 595-603. [PubMed]
  154. M. Yamaguchi, H. Kato, S. Yoshida, S. Yamamura, H. Uchimiya, M. Umeda. Control of in vitro organogenesis by cyclin-dependent kinase activities in plants. Proc. Natl. Acad. Sci. USA, 100 (2003), No. 13, 8019-8023. [CrossRef]
  155. J.A. Yarbrough. Anatomical and developmental studies of the foliar embryos of Bryophyllum calicinum. Amer. J. of Bot., 19 (1932), 443-453. [CrossRef]
  156. Y.X. Zhu, P.J. Davies. The control of apical bud growth and senescence by auxin and gibberellin in genetic lines of peas. Plant Physiol., 113 (1997), 631-637. [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.