Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 2, 2011
Modelling of plant growth
Page(s) 1 - 53
Published online 11 October 2010
  1. S.H.Howell. Molecular Genetics of Plant Development. Cambridge University Press, Cambridge, 2000. [Google Scholar]
  2. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology of the Cell (5th ed.). Garland Science, New York, 2008. [Google Scholar]
  3. TA. Steeves, and IM. Sussex. Patterns in Plant Development. Cambridge University Press, New York, 1989. [Google Scholar]
  4. M. Aida, T. Ishida, M. Tasaka. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development., 126 (1999), No. 8, 1563-1570. [PubMed] [Google Scholar]
  5. M. Aida, T. Vernoux, M. Furutani, J. Traas, M. Tasaka. Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development., 129 (2002), 3965-3974. [PubMed] [Google Scholar]
  6. M. Aida, M. Tasak. Morphogenesis and patterning at the organ boundaries in the higher plant shoot apex. Plant Mol. Biol., 60 (2006), No. 6, 915-928. [CrossRef] [PubMed] [Google Scholar]
  7. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology of the Cell (5th ed.). Garland Science, New York, 2008. [Google Scholar]
  8. M.J. Aukerman, and H. Sakai. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell, 15 (2003), 2730-2741. [CrossRef] [PubMed] [Google Scholar]
  9. D.P. Bartel. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116 (2004), 281-297. [CrossRef] [PubMed] [Google Scholar]
  10. M.K. Barton, R.S. Poethig. Formation of the shoot apical meristem in Arabidopsis thaliana - an analysis of development in the wild type and in the shoot meristemless mutant. Development, 119 (1993), 823-831. [Google Scholar]
  11. T.B. Batygina. Embryoidogeny. In: T.B. Batygina [ed.], Embryology of flowering plants. Terminology and concepts.vol.2, 502-509. Science Publishers, Inc., Enfield (NH), Plymouth, 2006. [Google Scholar]
  12. T.B. Batygina, V.E. Vasileva. Plant reproduction. Sankt-Petersburg University Press, Sankt-Petersburg, 2002. (In Russian). [Google Scholar]
  13. E. Benkova, M. Michniewicz, M. Sauer, T. Teichmann, D. Seifertova, G. Jürgens, J. Friml. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115 (2003), 591-602. [CrossRef] [PubMed] [Google Scholar]
  14. M.J. Bennett, A. Marchant, H.G. Green, S.T. May, S.P. Ward, P.A. Millner, A.R. Walker, B. Schulz, K.A. Feldmann. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science, 273 (1996), 948-950. [CrossRef] [PubMed] [Google Scholar]
  15. T. Berleth, G. Jurgens. The role of monopteros gene in organizing the basal body regionof the Arabidopsis embryo. Development, 118 (1993), 575-587. [Google Scholar]
  16. N. Bessonov, N. Morozova, V. Volpert. Modeling of branching patterns in plants. Bull Math Biol., Apr; 70 (2008), No. 3, 868-89. [Google Scholar]
  17. I. Blilou, J. Xu, M. Wildwater, V. Willemsen, I. Paponov, J. Friml, R. Heidstra, M. Aida, K. K. Palme, B. Scheres. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 433 (2005), 39-44. [CrossRef] [PubMed] [Google Scholar]
  18. W. Bloom. Cellular differentiation and tissue culture. Physiol. Rev., 17 (1937), 589-617. [Google Scholar]
  19. N.H. Boke. Leaf and areole development in Coryphantha. Am. J. Bot. 39 (1952), 134-145. [CrossRef] [Google Scholar]
  20. L. Borisjuk, H. Rolletschek, U. Wobus, H. Weber. Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds. J. Exp. Biol., 54 (2003), 503-512. [Google Scholar]
  21. E. Boucheron, A. Guivarc’h, A. Azmi, W. Dewitte, H. Van Onckelen, D. Chriqui. Competency of Nicotiana tabacum L. stem tissues to dedifferentiate is associated with differential levels of cell cycle gene expression and endogenous cytokinins. Planta, 215 (2002), 267-278. [CrossRef] [PubMed] [Google Scholar]
  22. J.L. Bowman, D.R. Smyth, E.M. Meyerowitz. Genetic interactions among floral homeotic genes of Arabidopsis. Development, 112 (1991), 1-20. [PubMed] [Google Scholar]
  23. U. Brand, J.C. Fletcher, M. Hobe, E.M. Meyerowitz, R. Simon. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 289 (2000), 617-619. [CrossRef] [PubMed] [Google Scholar]
  24. V.B. Brukhin. Paeonia embryo development in vivo and in vitro. PhD thesis, Komarov Botanical Institute, Russian Academy of Sciences, St.Petersburg, 1993. [Google Scholar]
  25. V.B. Brukhin, T.B. Batygina. Embryo culture and somatic embryogenesis in culture of Paeonia anomala L. Phytomorphology, 44 (1994), No. 3&4, 151-157. [Google Scholar]
  26. M.E. Byrne, C.A. Kidner, R.A. Martienssen. Plant stem cells: divergent pathways and common themes in shoots and roots. Current Opinion in Genetics and Development, 13 (2003), 551-557. [CrossRef] [Google Scholar]
  27. I. Casimiro, A. Marchant, R.P. Bhalerao, T. Beeckman, S. Dhooge, R. Swarup, N. Graham, D. Inze, G. Sandberg, P.J. Casero, M. Bennett. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell, 13 (2001), 843-852. [CrossRef] [PubMed] [Google Scholar]
  28. A.M. Chaudhury, L. Ming, C. Miller, S. Craig, E.S. Dennis, W.J. Peacock. Fertilisation-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA, 94 (1997), 4223-4228. [CrossRef] [Google Scholar]
  29. S.E. Clark, R.W. Williams, E.M. Meyerowitz. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 89 (1997), 575-585. [CrossRef] [PubMed] [Google Scholar]
  30. F.A. Clowes. Apical Meristems. Davis Company, Philadelphia, 1961. [Google Scholar]
  31. JM. Cock, S. McCormick. A Large Family of Genes That Share Homology with CLAVATA3. Plant Physiology, 126 (2001), 939-942. [CrossRef] [PubMed] [Google Scholar]
  32. D.J. Cosgrove. Loosening of plant cell walls by expansins. Nature, 407 (2000), 321-326. [CrossRef] [PubMed] [Google Scholar]
  33. A. Delisle. The influence of auxin on secondary branching in two species of aster. Am. J. Bot., 24 (1937), 159-167. [CrossRef] [Google Scholar]
  34. P. Dhonukshe, H. Tanaka, T. Goh, K. Ebine, AP. M?h?nen, K. Prasad, I. Blilou, I.N. Geldner, J. Xu, T. Uemura, J. Chory, T. Ueda, A. Nakano, B. Scheres, J. Friml. Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature, 18 (2008), No. 456, 962-966. [CrossRef] [Google Scholar]
  35. S.J. Elledge. Cell Cycle Checkpoints: Preventing an Identity Crisis. Science, 274 (1996), 1664-1672. [CrossRef] [PubMed] [Google Scholar]
  36. K. Endrizzi, B. Moussian, A. Haecker, JZ. Levin, T. Laux. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J., 10 (1996), 967-979. [CrossRef] [PubMed] [Google Scholar]
  37. G.I. Evan, K.H. Vousden. Proliferation, cell cycle and apoptosis in cancer. Nature, 411 (2001), 342-348. [CrossRef] [PubMed] [Google Scholar]
  38. A.J. Fleming, S. McQueen-Mason, T. Mandel and C. Kuhlemeier. Induction of leaf primordia by the cell wall protein expansion. Science, 276, (1997), 1415-1418. [CrossRef] [Google Scholar]
  39. A.J. Fleming. Formation of primordia and phyllotaxy. Curr. Opin. Plant Biol., 8, (2005), 53-58. [CrossRef] [PubMed] [Google Scholar]
  40. J.C. Fletcher, U. Brand, M.P. Running, R. Simon, E.M. Meyerowitz. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 283 (1999), 1911-1914. [CrossRef] [PubMed] [Google Scholar]
  41. J.C. Fletcher. Shoot and Floral Meristem Maintenance in Arabidopsis. Annu. Rev. Plant Biol., 53 (2002), 45-66. [CrossRef] [PubMed] [Google Scholar]
  42. J. Friml, E. Benkova, I. Blilou, J. Wisniewska, T. Hamann, K. Ljung, S. Woody, G. Sandberg, B. Scheres, G. Jurgens, K. Palme. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell, 108 (2002), No. 5, 661-673. [CrossRef] [PubMed] [Google Scholar]
  43. J. Friml, A. Vieten, M. Sauer, D. Weijers, H. Schwarz, T. Hamann, R. Offringa, and G. Jurgens. Effluxdependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature, 426 (2003), 147-153. [CrossRef] [PubMed] [Google Scholar]
  44. L. Galweiler, C. Guan, A. Muller, E. Wisman, K. Mendgen, A. Yephremov, K. Palme. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science, 282 (1998), 2226-2230. [CrossRef] [PubMed] [Google Scholar]
  45. N. Geldner, J. Friml, Y.D. Stierhof, G. Jurgens, and K. Palme. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 413 (2001), 425-428. [CrossRef] [PubMed] [Google Scholar]
  46. N. Geldner, N. Anders, H. Wolters, J. Keicher, W. Kornberger, P. Muller, A. Delbarre, T. Ueda, A. Nakano, G. Jürgens. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell, 112 (2003), 219-230. [CrossRef] [PubMed] [Google Scholar]
  47. N. Geldner, S. Richter, A. Vieten, S. Marquardt, R.A. Torres-Ruiz, U. Mayer, G. Jürgens. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development, 131 (2004), No. 2, 389-400. [CrossRef] [PubMed] [Google Scholar]
  48. G. Grafi. How cells dedifferentiate: a lesson from plants. Dev Biol., 268 (2004), No. 1, 1-6. [CrossRef] [PubMed] [Google Scholar]
  49. T. Greb, O. Clarenz, E. Schafer, D. Muller, R. Herrero, G. Schmitz, K. There. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev., 17 (2003), No. 9, 1175-1187. [CrossRef] [PubMed] [Google Scholar]
  50. U. Grossniklaus, J.P. Vielle-Calzada, M.A. Hoeppner, W.B. Gagliano. Maternal control of embryogenesis by MEDEA, a Polycomb-group gene in Arabidopsis. Science 280 (1998), 446-450. [CrossRef] [PubMed] [Google Scholar]
  51. M.G. Heisler, C. Ohno, P. Das, P. Sieber, G.V. Reddy, J.A. Long, E.M. Meyerowitz. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol., 15 (2005), 1899-1911. [Google Scholar]
  52. T. Hamann, E. Benkova, I. Baurle, M. Kientz, G. Jurgens. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev., 16 (2002), 1610-1615. [CrossRef] [PubMed] [Google Scholar]
  53. T. Hamann, U. Mayer, G. Jurgens. The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development, 126 (1999), 1387-1395. [PubMed] [Google Scholar]
  54. D. Hanahan, RA. Weinberg. The hallmarks of cancer. Cell, 100 (2000), 57-70. [CrossRef] [PubMed] [Google Scholar]
  55. C.S. Hardtke, T. Berleth. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J., 17 (1998), 1405-1411. [CrossRef] [PubMed] [Google Scholar]
  56. Y. Helariutta, H. Fukaki, J. Wysocka-Diller, K. Nakajima, J. Jung, G. Sena, M.T. Hauser, P.N. Benfey. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell, 101 (2000), 555-567. [CrossRef] [PubMed] [Google Scholar]
  57. S. Herwig, M. Strauss. The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis. Eur J Biochem., 246 (1997), No. 3, 581-601. [CrossRef] [PubMed] [Google Scholar]
  58. S.H. Howell. Molecular Genetics of Plant Development. Cambridge University Press, Cambridge, 2000. [Google Scholar]
  59. K. Himanen, E. Boucheron, S. Vanneste, J. de Almeida Engler, D. Inze, T. Beeckman. Auxinmediated cell cycle activation during early lateral root initiation. Plant Cell, 14 (2002), 2339-2351. [CrossRef] [PubMed] [Google Scholar]
  60. D. Jackson, B. Veit, S. Hake. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development, 120 (1994), 405-413. [Google Scholar]
  61. R.V. Jean. Phyllotaxis. A Systematic Study in Plant Morphogenesis. Cambridge University Press, New York, 1994. [Google Scholar]
  62. S. Jeong, A.E. Trotochaud, S.E. Clark. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell, 11 (1999), 1925-1934. [CrossRef] [PubMed] [Google Scholar]
  63. K. Jiang, Y.L. Meng, L.J. Feldman. Quiescent center formation inmaize roots is associated with an auxin-regulated oxidizing environment. Development, 130 (2003), 1429-1438. [CrossRef] [PubMed] [Google Scholar]
  64. V.. Jimenez. Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones. Rev Brasil de Fisio Vegl., 13 (2001), 196-22. [Google Scholar]
  65. H. Jonsson, M.G. Heisler, B.E. Shapiro, E.M. Meyerowitz, E. Mjolsness. An auxin-driven polarized transport model for phyllotaxis. Proc. Natl. Acad. Sci. USA, 103 (2006), No. 5, 1633-1638. [Google Scholar]
  66. G. Jurgens, U. Mayer, R.A.T. Ruiz, T. Berleth, and S. Misera. Genetic analysis of pattern formation in the Arabidopsis embryo. Development Suppl., 91 (1991), No. 1, 27-3. [Google Scholar]
  67. G. Jurgens, N. Geldner. Protein secretion in plants: from the trans-Golgi network to the outer space. Traffic, 3 (2002), No. 9, 605-613. [CrossRef] [PubMed] [Google Scholar]
  68. H. Ishikawa, and M.L. Evans. Specialized zones of development in roots. Plant Physiol., 109 (1995), 725-727. [PubMed] [Google Scholar]
  69. N.M. Kerk, K. Jiang, L.J. Feldman. Auxin metabolism in the root apical meristem. Plant Physiol., 122 (2000), 925-932. [CrossRef] [PubMed] [Google Scholar]
  70. R.A. Kerstetter, S. Hake. Shoot Meristem Formation in Vegetative Development. Plant Cell., 7 (1997), 1001-1010. [CrossRef] [Google Scholar]
  71. A.M. Koltunow. Apomixis: embryo sacs and embryos formed without meiosis or fertilization in Ovules. Plant Cell, 5 (1993), 1425-1437. [CrossRef] [PubMed] [Google Scholar]
  72. P. Laufs, A. Peaucelle, H. Morin, and J. Traas. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 131 (2004), 4311-4322. [CrossRef] [PubMed] [Google Scholar]
  73. T. Laux, KFX. Mayer, J. Berger, G. Jurgens. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 122 (1996), 87-96. [PubMed] [Google Scholar]
  74. J. Law, S. Jacobsen. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics, 11 (2010), 204-220. [CrossRef] [PubMed] [Google Scholar]
  75. M. Lenhard, T. Laux. Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development, 130 (2003), 3163-3173. [CrossRef] [PubMed] [Google Scholar]
  76. P. Leon, J. Sheen. Sugar and hormone connections. Trends Plant Sci., 8 (2003), No. 3, 110-116. [CrossRef] [PubMed] [Google Scholar]
  77. C. Lincoln, J. Long, J. Yamaguchi, K. Serikawa, and S. Hake. A knotted1-like Homeobox Gene in Arabidopsis Is Expressed in the Vegetative Meristem and Dramatically Alters Leaf Morphology When Overexpressed in Transgenic Plants. Plant Cell, 6 (1994), 1859-1876. [CrossRef] [PubMed] [Google Scholar]
  78. Y. Liu and M.S. Rao. Transdifferentiation-fact or artifact. J. Cell. Biochem., 88 (2003), 29-40. [CrossRef] [PubMed] [Google Scholar]
  79. K. Ljung, AK. Hull, J. Celenza, M. Yamada, M. Estelle, J. Normanly, G. Sandberg. Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell, 4 (2005), 1090-104. [CrossRef] [PubMed] [Google Scholar]
  80. J.A. Long, E.I. Moan, J.I. Medford, M.K. Barton. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 379 (1996), 66-69. [CrossRef] [PubMed] [Google Scholar]
  81. J.U. Lohmann, R.L. Hong, M. Hobe, M.A. Busch, F. Parcy, R. Simon, D. Weigel. A Molecular Link between Stem Cell Regulation and Floral Patterning in Arabidopsis. Cell 105 (2001), 793-803. [CrossRef] [PubMed] [Google Scholar]
  82. J. Lopez-Bucio, E. Hernandez-Abreu, L. Sanchez-Calderon, MF. Nieto-Jacobo, J. Simpson, L. Herrera-Estrella. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol., 129 (2002), 244-256. [CrossRef] [PubMed] [Google Scholar]
  83. S. Lorenz, S. Tintelnot, R. Reski, E.L. Decker. Cyclin D-knockout uncouples developmental progression from sugar availability. Plant Mol. Biol., 53 (2003), 227-236. [CrossRef] [PubMed] [Google Scholar]
  84. P. Lu, R. Porat, J.A. Nadeau and S.D. O’Neill. Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homebox genes. Plant Cell, 8 (1996), 2155-2168. [CrossRef] [PubMed] [Google Scholar]
  85. J. Luck and H. Luck. Classification of Plant Meristems based on Cellworks (3D L-systems). The Maintainance and Comlexity of Their Cellular Patterns. In: Pattern Formation in Biology, Vision and Dynamics. Editors: A. Carbone, M. Gromov, P. Prusinkiewicz. 2000, 199-216. [Google Scholar]
  86. W. Lukowitz, U. Mayer, and G. Jürgens. Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell, 84 (1996), 61-71. [CrossRef] [PubMed] [Google Scholar]
  87. R.F. Lyndon. The Shoot Apical Meristem. Cambridge University Press, Cambridge. 1998. [Google Scholar]
  88. K. Lynn, A. Fernandez, M. Aida, J. Sedbrook, M. Tasaka, P. Masson, and MK. Barton. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development, 126 (1999), 469-481. [PubMed] [Google Scholar]
  89. Z. Magyar, L. De Veylder, A. Atanassova, L. Bako, D. Inze, L. Bogre. The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division. Plant Cell, 9 (2005), 2527-2541. [CrossRef] [PubMed] [Google Scholar]
  90. U. Mayer, G. Buettner, and G. Jürgens. Apical-basal pattern formation in the Arabidopsis embryo studies on the role of the gnom gene. Development, 117 (1993), 149-162. [Google Scholar]
  91. K.F. Mayer, H. Schoof, A. Haecker, M. Lenhard, G. Jürgens, T. Laux. Role of WUSCHEL in Regulating Stem Cell Fate in the Arabidopsis Shoot Meristem. Cell, 95 (1998), 805-815. [CrossRef] [PubMed] [Google Scholar]
  92. R.D. Meicenheimer. Changes in Epilobium phyllotaxy induced by N-1-naphthylphthalamic acid and a-4-chlorophenoxyisobutyric acid. Am. J. Bot., 68 (1981), 1139-1154. [CrossRef] [Google Scholar]
  93. Y. Mizukami, and H. Ma. Determination of Arabidopsis Floral Meristem identity by Agamous. The Plant Cell, 9 (1997), 393-408. [CrossRef] [PubMed] [Google Scholar]
  94. A.P. Mordhorst, K.J. Voerman, M.V. Hartog, E.A. Meijer, J. van Went, M. Koornneef, S.C. de Vries. Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics, 149 (1998), 549-563. [PubMed] [Google Scholar]
  95. J.B. Morel, C. Godon, P. Mourrain, C. Beclin, S. Boutet, F. Feuerbach, F. Proux, H. Vaucheret. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell, 14 (2002), 629-639. [CrossRef] [PubMed] [Google Scholar]
  96. J. Mravec, M. Kubes, A. Bielach, V. Gaykova, J. Petr?sek, P. Skupa, S. Chand, E. Benkov, E. Zaz?malov, J. Friml. Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development, 20 (2008), 3345-3354. [CrossRef] [Google Scholar]
  97. A. Muller, C. Guan, L. Gälweiler, P. Tänzler, P. Huijser, A. Marchant, G. Parry, M. Bennett, E. Wisman, K. Palme. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J., 17 (1998), No. 23, 6903-6911. [CrossRef] [PubMed] [Google Scholar]
  98. K. Nakajima, G. Sena, T. Naw., PN. Benfey. Intercellular movement of the putative transcription factor SHR in root patterning. Nature, 413 (2001), 307-311. [CrossRef] [PubMed] [Google Scholar]
  99. D.M. Nelson, X. Ye, C. Hall, H. Santos, T. Ma, GD. Kao, TJ. Yen, J.W. Harper, P.D. Adams. Coupling of DNA synthesis and histone synthesis in S phase independent of cyclin/cdk2 activity. Mol. Cell. Biol., 22 (2002), No. 21, 7459-7472. [CrossRef] [PubMed] [Google Scholar]
  100. E.A. Nigg. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays, 17 (1995), No. 6, 471-480. [CrossRef] [PubMed] [Google Scholar]
  101. S.J. Odelberg. Inducing cellular dedifferentiation: a potential method for enhancing endogenous regeneration in mammals. Semin. Cell Dev. Biol., 13 (2002), 335-343. [CrossRef] [PubMed] [Google Scholar]
  102. K. Okada, J. Ueda, M.K. Komaki, C.J. Bell, Y. Shimura. Requirement of the auxin polar transport system in early stages of arabidopsis floral bud formation. Plant Cell, 3, (1991), 677-684. [CrossRef] [PubMed] [Google Scholar]
  103. D.J. Osborne, MT. McManus. Hormones, Signals and Target Cells in Plant Development. Cambridge University Press, Cambridge, 2005. [Google Scholar]
  104. J.F. Palatnik, E. Allen, X. Wu, C. Schommer, R. Schwab, J.C. Carrington, and D. Weigel. Control of leaf morphogenesis by microRNAs. Nature, 425 (2003), 257-263. [CrossRef] [PubMed] [Google Scholar]
  105. S. Pien, J. Wyrzykowska, S. McQueen-Mason, C. Smart, A. Fleming. Local expression of expansion induces the entire process of leaf development and modifies leaf shape. Proc. Natl. Acad. Sci.USA, 98 (2001), 11812-11817. [Google Scholar]
  106. R.S. Poethig, E.H.J. Coe and MM. Johri. Cell linage patterns in maize Zea mays embryogenesis a clonal analysis. Dev. Biol., 117 (1986), 392-404. [CrossRef] [Google Scholar]
  107. M.S. Rajeevan, A. Lang. Flower-bud formation in explants of photoperiodic and day-neutral Nicotiana biotypes and its bearing on the regulation of flower formation. Proc. Natl. Acad. Sci. USA, 90 (1993), No. 10, 4636-4640. [CrossRef] [Google Scholar]
  108. D. Reinhardt. Regulation of phyllotaxis. Int. J. Dev. Biol., 49 (2005), 539-546. [CrossRef] [PubMed] [Google Scholar]
  109. D. Reinhardt, F. Wittwer, T. Mandel, C. Kuhlemeier. Localized upregulation of a new expansion gene predicts the site of leaf formation in the tomato meristem. Plant Cell, 10 (1998), 1427-1437. [CrossRef] [PubMed] [Google Scholar]
  110. D. Reinhardt, T. Mandel, C. Kuhlemeier. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell, 12 (2000), 507-518. [Google Scholar]
  111. D. Reinhardt, E.R. Pesce, P. Stieger, T. Mandel, K. Baltensperger, M. Bennett, J. Traas, J. Friml, C. Kuhlemeier. Regulation of phyllotaxis by polar auxin transport. Nature, 462 (2003), 255-260. [CrossRef] [PubMed] [Google Scholar]
  112. P.B. de Reuille, I. Bohn-Courseau, C. Godin, J. Traas. A protocol to analyse cellular dynamics during plant development. Plant J., 6 (2005), 1045-1053. [CrossRef] [Google Scholar]
  113. M.W. Rhoades, B.J. Reinhart, L.P. Lim, C.B. Burge, B. Bartel, DP. Bartel. Prediction of plant microRNA targets. Cell, 110 (2002), 513-520. [CrossRef] [PubMed] [Google Scholar]
  114. E. Rojo, V.K. Sharma, V. Kovaleva, N.V. Raikhel, J.C. Fletcher. CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell, 14 (2002), 969-977. [CrossRef] [PubMed] [Google Scholar]
  115. E. Rosche, D. Blackmore, M. Tegeder, T. Richardson, H. Schroeder, T.J. Higgins, W.B. Frommer, C.E. Offler, J.W. Patrick. Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons. Plant J., 30 (2002), No. 2, 165-175. [CrossRef] [PubMed] [Google Scholar]
  116. S. Sabatini, D. Beis, H. Wolkenfelt, J. Murfett, T. Guilfoyle, J. Malamy, P. Benfey, O. Leyser, N. Bechtold, P. Weisbeek, B. Scheres. An auxindependent distal organizer of pattern and polarity in the Arabidopsis root. Cell, 99 (1999), 463-472. [CrossRef] [PubMed] [Google Scholar]
  117. S. Sabatini, R. Heidstra, M. Wildwater, B. Scheres. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev., 17 (2003), 354-358. [CrossRef] [PubMed] [Google Scholar]
  118. B. Scheres, H. Wolkenfelt, V. Willemsen, M. Terlouw, E. Lawson, C. Dean, and P. Weisbeek. Embryonic origin of the Arabidopsis primary root and root meristem initials. Development, 120 (1994), No. 9, 2475-2487. [Google Scholar]
  119. G. Schindelman, A. Morikami, J. Jung, TI. Baskin, NC. Carpita, P. Derbyshire, MC. McCann, PN. Benfey. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev., 15 (2001), No. 9, 1115-1127. [CrossRef] [PubMed] [Google Scholar]
  120. H. Schoof, M. Lenhard, A. Haecker, K.F. Mayer, G. Jurgens, T. Laux. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 100 (2000), 635-644. [CrossRef] [PubMed] [Google Scholar]
  121. C.J. Sherr. Cancer cell cycles. Science, 274 (1996), 1672-1677. [CrossRef] [PubMed] [Google Scholar]
  122. F. Sitbon, C. Astot, A. Edlund, A. Crozier, G. Sandberg. The relative importance of tryptophan-dependent and tryptophan-independent biosynthesis of indole-3-acetic acid in tobacco during vegetative growth. Planta, 211 (2000), 715-721. [CrossRef] [PubMed] [Google Scholar]
  123. F. Skoog. Chemical regulation of growth in plants. In: E.J. Boell (Ed.), Dynamics of Growth Process. 1954, 148-182. [Google Scholar]
  124. F. Skoog, C.O. Miller. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol., 11 (1957), 118-140. [PubMed] [Google Scholar]
  125. R.S. Smith, S. Guyomarch, T. Mandel, D. Reinhardt, C. Kuhlemeier, P. Prusinkiewicz. A plausible model of phyllotaxis. Proc. Natl. Acad. Sci. USA, 103 (2006), No. 5, 1301-1306. [CrossRef] [PubMed] [Google Scholar]
  126. R. Soni, J.P. Carmichael, Z.H. Shah, J.A. Murray. A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell, 7 (1995), No. 1, 85-103. [CrossRef] [PubMed] [Google Scholar]
  127. E. Souer, A. van Houwelingen, D. Kloos, J. Mol, R. Koes. The NO APICAL MERISTEM gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 85 (1996), 159-170. [CrossRef] [PubMed] [Google Scholar]
  128. T.A. Steeves and I.M. Sussex. Patterns in Plant Development, Cambridge University Press, New York, 1989. [Google Scholar]
  129. T. Steinmann, N. Geldner, M. Grebe, S. Mangold, C.L. Jackson, S. Paris, L. G?lweiler, K. Palme, G. Jurgens. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science, 286 (1999), 316-318. [CrossRef] [PubMed] [Google Scholar]
  130. P.A. Stieger, D. Reinhardt, C. Kuhlemeier. The auxin influx carrier is essential for correct leaf positioning. Plant J., 32 (2002), 509-517. [CrossRef] [PubMed] [Google Scholar]
  131. P. Stirnberg, S.P. Chatfield, HM. Leyser. AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis. Plant Physiol., 121 (1999), No. 3, 839-847. [CrossRef] [PubMed] [Google Scholar]
  132. J.M. Stone, A.E. Trotochaud, J.C. Walker, S.E. Clark. Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions. Plant Physiol., 117 (1998), 1217-1225. [CrossRef] [PubMed] [Google Scholar]
  133. R. Swarup, J. Friml, A. Marchant, K. Ljung, G. Sandberg, K. Palme, M. Bennett. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev., 15 (2001), 2648-2653. [CrossRef] [PubMed] [Google Scholar]
  134. G. Tang. siRNA and miRNA: an insight into RISCs. Trends in Biochemical Sciences, 30 (2005), 106-114. [CrossRef] [PubMed] [Google Scholar]
  135. R.L. Taylor. The foliar embryos of Malaxias paludosa. Canad. J. Bot., 45 (1967), 1553-1556. [CrossRef] [Google Scholar]
  136. W.L. Teo, P. Kumar, C.J. Goh, and S. Swarup. The expression of Brostm, a KNOTTED1-like gene, marks the cell type and timing of in vitro shoot induction in Brassica oleracea. Plant Mol. Biol., 46 (2001), 567-580. [CrossRef] [PubMed] [Google Scholar]
  137. K.V. Thimann, F. Skoog. Studies on the Growth Hormone of Plants: III. The Inhibiting Action of the Growth Substance on Bud Development. Proc. Natl. Acad. Sci. USA, 7 (1933), 714-716. [CrossRef] [Google Scholar]
  138. E. Thingnaes, S. Torre, A. Ernstsen, R. Moe. Day and night temperature responses in Arabidopsis:effects on gibberellin and auxin content, cell size, morphology and flowering time. Ann. Bot.(Lond.), 92 (2003), 601-612. [CrossRef] [Google Scholar]
  139. R.A. Torres-Ruitz, A. Lohner, G. Jurgens. The GURKE gene gene is required for normal organization of the apical region in the Arabidopsis embryo. Plant J., 10 (1996), 1005-1016. [CrossRef] [PubMed] [Google Scholar]
  140. D. Tosh, J.M. Slack. How cells change their phenotype. Nat. Rev. Mol. Cell Biol., 3 (2002), 187-194. [CrossRef] [PubMed] [Google Scholar]
  141. J. Traas, I. Bohn-Courseau. Cell proliferation patterns at the shoot apical meristem. Curr. Opin. Plant Biol., 8 (2005), 587-592. [CrossRef] [PubMed] [Google Scholar]
  142. B.S. Treml, S. Winderl, R. Radykewicz, M. Herz, G. Schweizer, P. Hutzler, E. Glawischnig, R.A. Ruiz. The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development, 139 (2005), 4063-4074. [CrossRef] [Google Scholar]
  143. T. Vernoux, J. Kronenberger, O. Grandjean, P. Laufs, J. Traas. PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Development, 127 (2000), 5157-5165. [PubMed] [Google Scholar]
  144. C.W. Vroemen, A.P. Mordhorst, C. Albrecht, M.A. Kwaaitaal, SC. de Vries. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell, 7 (2003), 1563-1577. [CrossRef] [Google Scholar]
  145. Y. Wang, C. Liu, K Li, F. Sun, H. Hu, X. Li, Y. Zhao, C. Han, W. Zhang, Y. Duan, M. Liu. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol. Biol., 64 (2007), No. 6, 633-644. [CrossRef] [PubMed] [Google Scholar]
  146. F.M. Watt, B.L. Hogan. Out of Eden: stem cells and their niches. Science, 287 (2000), 1427-1430. [CrossRef] [PubMed] [Google Scholar]
  147. D. Weigel, G. Jürgens. Stem cells that make stems. Nature, 415 (2002), 751-754. [PubMed] [Google Scholar]
  148. F.W. Went. Plant growth under controlled conditions. III. Correlation between various physiological processes and growth in the tomato plant. Am. J. Bot., 31 (1944), No. 10, 597-618. [CrossRef] [Google Scholar]
  149. A.D. Whetton, G.J. Graham. Homing and mobilization in the stem cell niche. Trends Cell Biol., 9 (1999), 233-238. [CrossRef] [PubMed] [Google Scholar]
  150. I. Wilmut, N. Beaujean, P.A. de Sousa, A. Dinnyes, T.J. King, L.A. Paterson, D.N. Wells, L.E. Young. Somatic cell nuclear transfer. Nature, 419 (2002), 583-586. [CrossRef] [PubMed] [Google Scholar]
  151. R.W. Williams, J.M. Wilson, E.M. Meyerowitz. A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway. Proc. Natl. Acad. Sci. USA, 94 (1997), 10467-10472. [CrossRef] [Google Scholar]
  152. J. Wyrzykowska, S. Pien, W.H. Shen, AJ. Fleming. Manipulation of leaf shape by modulation of cell division. Development, 129 (2002), 957-964. [PubMed] [Google Scholar]
  153. J.W. Wysocka-Diller, Y. Helariutta, H. Fukaki, J.E. Malamy, P.N. Benfey. Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development, 127 (2000), 595-603. [PubMed] [Google Scholar]
  154. M. Yamaguchi, H. Kato, S. Yoshida, S. Yamamura, H. Uchimiya, M. Umeda. Control of in vitro organogenesis by cyclin-dependent kinase activities in plants. Proc. Natl. Acad. Sci. USA, 100 (2003), No. 13, 8019-8023. [CrossRef] [Google Scholar]
  155. J.A. Yarbrough. Anatomical and developmental studies of the foliar embryos of Bryophyllum calicinum. Amer. J. of Bot., 19 (1932), 443-453. [CrossRef] [Google Scholar]
  156. Y.X. Zhu, P.J. Davies. The control of apical bud growth and senescence by auxin and gibberellin in genetic lines of peas. Plant Physiol., 113 (1997), 631-637. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.