Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 3, 2011
Computational aerodynamics
Page(s) 2 - 27
Published online 16 May 2011
  1. S. R. Allmaras, J. E. Bussoletti, C. L. Hilmes, F. T. Johnson, R. G. Melvin, E. N. Tinoco, V. Venkatakrishnan, L. B. Wigton, D. P. Young. Algorithm issues and challenges associated with the development of robust CFD codes. Giuseppe Buttazzo, Aldo Frediani, Variational Analysis and Aerospace Engineering. New York, Springer, 33 (2009), 1–19. [Google Scholar]
  2. M. B. Bieterman, J. E. Bussoletti, C. L. Hilmes, F. T. Johnson, R. G. Melvin, D. P. Young. An adaptive grid method for analysis of 3D aircraft configurations. Computer Methods in Applied Mechanics and Engineering, 101 (1992), 225–249. [CrossRef] [Google Scholar]
  3. L. Demkowicz. Computing with hp-adaptive finite elements, Vol. 1: One and two dimensional elliptic and Maxwell problems. Chapman and Hall/CRC Applied Mathematics, 2006. [Google Scholar]
  4. B. Diskin, J. L. Thomas. Accuracy of gradient reconstruction on grids with high aspect ratio. NIA Report No.2008-12, December, 2008. [Google Scholar]
  5. T. J. R. Hughes, A. Brooks. A multi-dimensional upwind scheme with no crosswind diffusion. Finite Element Methods for Convection-Dominated Flows (ed. T.J.R. Hughes) AMD 34, New York, ASME (1979), 19–35. [Google Scholar]
  6. F. T. Johnson, E. N. Tinoco, J. N. Yu. Thirty years of development and application of CFD at Boeing Commercial Airplanes, Seattle. Computers & Fluids, 34 (2005), 1115–1151. [CrossRef] [Google Scholar]
  7. D. J. Mavriplis. Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes. AIAA Paper 2003–3986. [Google Scholar]
  8. T. A. Oliver. A high order, adaptive, discontinuous Galerkin finite element method for the Reynolds-averaged Navier-Stokes equations. Ph. D. Thesis, M.I.T., (2008). [Google Scholar]
  9. N. B. Petrovskaya. Discontinuous weighted least squares approximation on irregular grids. CMES: Computer Modeling in Engineering & Sciences, 32 (2008), No. 2, 69–84 . [Google Scholar]
  10. N. A Pierce, M. B. Giles. Adjoint and defect error bounding and correction for functional estimates. J. Comp Phys., 200 (2004), 769–794. [CrossRef] [Google Scholar]
  11. P. R. Spalart, S. R. Allmaras. A One-equation turbulence model for aerodynamic flows. La Recherche Ae’rospatiale, 1 (1994), 5–21 . Also AIAA paper 92-0439. [Google Scholar]
  12. J. C. Vassberg, E. N. Tinoco, M. Mani, B. Rider, T. Zickhur, D. W. Levy, O. P. Brodersen, B. Eisfeld, S. Crippa, R. A. Wahls, J. H. Morrison, D. J. Mavriplis, M. Murayama. Summary of the fourth AIAA CFD Drag Prediction Workshop. 28th AIAA Applied Aerodynamics Conference, 28 June – 1 July, 2010, Chicago, IAIAA Paper 2010-4547. [Google Scholar]
  13. D. A. Venditti, D. L. Darmofal. Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows. J. Comp Phys., 187 (2003), 22–46. [CrossRef] [Google Scholar]
  14. V. Venkatakrishnan, S. R. Allmaras, F. T. Johnson, D. S. Kamenetskii. Higher order schemes for the compressible Navier-Stokes equations. 16th AIAA Computational Fluid Dynamics Conference. Orlando, Florida, June 23-26, 2003, AIAA Paper 2003-3987. [Google Scholar]
  15. D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson, S. S. Samant, J.E. Bussoletti. A locally refined rectangular grid finite element method: application to computational fluid dynamics and computational physics. J. Comp Phys., 92 (1991), 1–66. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.