Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 3, 2011
Computational aerodynamics
Page(s) 28 - 56
DOI https://doi.org/10.1051/mmnp/20116302
Published online 16 May 2011
  1. F. Bassi, S. Rebay. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys., 131 (1997), 267–279. [CrossRef] [MathSciNet]
  2. F. Bassi, S. Rebay. GMRES discontinuous Galerkin solution of the compressible Navier- Stokes equations. In B. Cockburn, G.E. Karniadakis, and C. W. Shu, editors, Discontinuous Galerkin Methods: Theory, Computations and Applications, volume 11 of Lecture Note in Computational Science and Engineering. Springer, 2000.
  3. Q. Chen and I. Babuska. Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Comput. Methods Appl. Mech. Eng., 128 (1995), 405-417. [CrossRef]
  4. B. Cockburn, S. Y. Lin, C. W. Shu. TVD Runge-Kutta local projection discontinuous Galerkin Finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys., 84 (1989), 90-113. [CrossRef] [MathSciNet]
  5. B. Cockburn, C. W. Shu. TVD Runge-Kutta local projection discontinuous Galerkin Finite element method for conservation laws II: general framework. Math. Comput., 52 (1989), 411-435.
  6. B. Cockburn, C. W. Shu. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal., 35 (1998), No. 6, 2440-2463. [CrossRef] [MathSciNet]
  7. B. Cockburn, C. W. Shu. The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys., 141 (1998), 199-224. [CrossRef] [MathSciNet]
  8. K. Fidkowski, T. A. Oliver, J. Lu, D. Darmofal. p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput. Phys., 207 (2005), 92-113. [CrossRef]
  9. H. Gao, Z. J. Wang. A high-order lifting collocation penalty formulation for the Navier- Stokes equations on 2D mixed grids. AIAA Paper 2009-3784, 2009.
  10. G. J. Gassner, F. Lorcher, C-D. Munz, and J. S. Hesthaven. Polymorphic nodal elements and their application in discontinuous Galerkin methods. J. Comput. Phys., 228 (2009), 1573-1590. [CrossRef] [MathSciNet]
  11. S. K. Godunov. A difference scheme for numerical computation of discontinuous solutions of equations of fluid dynamics. Math. Sbornik, 47 (1959), 271-306, In Russian.
  12. T. Haga, M. Furudate, K. Sawada. RANS simulation using high-order spectral volume method on unstructured tetrahedral grids. AIAA Paper 2009–404, 2009.
  13. T. Haga, K. Sawada, Z. J. Wang. An implicit LU-SGS scheme for the spectral volume method on unstructured tetrahedral grids. Communications in Computational Physics, 6 (2009), No. 5, 978-996. [CrossRef] [MathSciNet]
  14. R. Harris, Z. J. Wang, Y. Liu. Efficient quadrature-free high-order spectral volume method on unstructured grids: Theory and 2D implementation. J. Comput. Phys., 227 (2008), 1620-1642. [CrossRef] [MathSciNet]
  15. J. S. Hesthaven. From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J. Numer. Anal., 35 (1998), No. 2, 655-676. [CrossRef] [MathSciNet]
  16. H. T. Huynh. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. AIAA Paper 2007–4079, 2007.
  17. H. T. Huynh. A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion. AIAA Paper 2009–403, 2009.
  18. A. Jameson. Analysis and design of numerical schemes for gas dynamics. I. Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence. Int. J. Comput. Fluid Dyn., 4 (1994), 171–218. [CrossRef]
  19. T. A. Johnson and V. C. Patel. Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech., 378 (1999), 19-70. [CrossRef]
  20. D. A. Kopriva and J. H. Kolias. A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys., 125 (1996), 244–261. [CrossRef] [MathSciNet]
  21. M. S. Liou. A sequel to AUSM, Part II: AUSM+-up for all speeds. J. Comput. Phys., 214 (2006), 137-170. [CrossRef] [MathSciNet]
  22. Y. Liu, M. Vinokur, and Z. J. Wang. Discontinuous spectral difference method for conservation laws on unstructured grids. In Proceedings of the Third International Conference on Computational Fluid Dynamics, Toronto, Canada, July 2004.
  23. Y. Liu, M. Vinokur, and Z. J. Wang. Spectral difference method for unstructured grids I: Basic formulation. J. Comput. Phys., 216 (2006), 780-801. [CrossRef] [MathSciNet]
  24. Y. Liu, M. Vinokur, Z. J. Wang. Spectral (finite) volume method for conservation laws on unstructured grids V: Extension to three-dimensional systems. J. Comput. Phys., 212 (2006), 454-472. [CrossRef] [MathSciNet]
  25. H. Luo, J. D. Baum, and R. Lohner. A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids. J. Comput. Phys., 227 (2008), 8875-8893. [CrossRef] [MathSciNet]
  26. D. J. Mavriplis. Multigrid strategies for viscous flow solvers on anisotropic unstructured meshes. J. Comput. Phys., 145 (1998), 141-165. [CrossRef] [MathSciNet]
  27. G. May, A. Jameson. A spectral difference method for the Euler and Navier-Stokes equations. AIAA Paper 2006–304, 2006.
  28. C. R. Nastase, D. J. Mavriplis. High-order discontinuous Galerkin methods using an hp-multigrid approach. J. Comput. Phys., 213 (2006), 330-357. [CrossRef]
  29. S. Osher. Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal., 21 (1984), 217-235. [CrossRef] [MathSciNet]
  30. W. H. Reed, T. R. Hill. Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory Report LA-UR-73-479, 1973.
  31. P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43 (1981), 357-372. [NASA ADS] [CrossRef] [MathSciNet]
  32. V. V. Rusanov. Calculation of interaction of non-steady shock waves with obstacles. J. Comput. Math. Phys., 1 (1961), 267-279.
  33. S. J. Sherwin, G. E. Karniadaks. A new triangular and tetrahedral basis for high-order (hp) finite element methods. Int. J. Num. Meth. Eng., 38 (1995), 3775–3802. [CrossRef]
  34. C. W. Shu. Total-variation-diminishing time discretizations. SIAM Journal on Scientific and Statistical Computing, 9 (1988), 1073-1084. [CrossRef]
  35. C. W. Shu. Essentially non-oscillatory and weighted and non-oscillatory schemes for hyperbolic conservation laws. In B. Cockburn, C. Johnson, C.-W. Shu, and E. Tadmor, editors, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, volume 1697 of Lecture Note in Mathematics. Springer, 1998.
  36. Y. Sun, Z. J. Wang, and Y. Liu. High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids. Communications in Computational Physics, 2 (2007), 310-333. [MathSciNet]
  37. S. Taneda. Experimental investigations of the wake behind a sphere at low reynolds nombers. J. Phys. Soc. Japan, 11 (1956), 1104-1108. [NASA ADS] [CrossRef]
  38. A. G. Tomboulides, S. A. Orzag. Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech., 416 (2000), 45-73. [CrossRef] [MathSciNet]
  39. K. Van den Abeele and C. Lacor. An accuracy and stability study of the 2D spectral volume method. J. Comput. Phys., 226 (2007), 1007-1026. [CrossRef] [MathSciNet]
  40. K. Van den Abeele, C. Lacor, Z. J. Wang. On the stability and accuracy of the spectral difference method. J. Sci. Comput., 37 (2008), 162-188. [CrossRef] [MathSciNet]
  41. B. Van Leer. Towards the ultimate conservative difference scheme V. A second order sequel to GodunovŠs method. J. Comput. Phys., 32 (1979), 110-136.
  42. B. Van Leer, S. Nomura. Discontinuous Galerkin for diffusion. AIAA Paper 2005–5108, 2005.
  43. Z. J. Wang. Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation. J. Comput. Phys., 178 (2002), 210-251. [CrossRef] [MathSciNet]
  44. Z. J. Wang. High-order methods for the Euler and Navier-Stokes equations on unstructured grids. Progress in Aerospace Sciences, 43 (2007), 1-41. [CrossRef]
  45. Z. J. Wang, H. Gao. A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J. Comput. Phys., 228 (2009), 8161-8186. [CrossRef] [MathSciNet]
  46. Z. J. Wang, Y. Liu. Spectral (finite) volume method for conservation laws on unstructured grids II: Extension to two-dimensional scalar equation. J. Comput. Phys., 179 (2002), 665-697. [CrossRef] [MathSciNet]
  47. Z. J. Wang, Y. Liu. Spectral (finite) volume method for conservation laws on unstructured grids III: One-dimensional systems and partition optimization. Journal of Scientific Computing, 20 (2004), No. 1, 137-157. [CrossRef] [MathSciNet]
  48. Z. J. Wang, L. Zhang, Y. Liu. Spectral (finite) volume method for conservation laws on unstructured grids IV: Extension to two-dimensional systems. J. Comput. Phys., 194 (2004), 716-741. [CrossRef] [MathSciNet]
  49. T. Warburton. An explicit construction of interpolation nodes on the simplex. J. Eng. Math., 56 (2006), 247-262. [CrossRef]
  50. O. C. Zienkiewicz, R. L. Taylor. The Finite Element Method The Basics, vol. 1. Butterworth-Heinemann, Oxford, England, 2000.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.