Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 3, 2011
Computational aerodynamics
Page(s) 57 - 83
Published online 16 May 2011
  1. D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis, 39 (2002), No. 5, 1749-1779. [Google Scholar]
  2. M. Arora, P. L. Roe. On postshock oscillations due to shock capturing schemes in unsteady flows. Journal of Computational Physics, 130 (1997), No. 1, 25-40. [Google Scholar]
  3. ASC Flash Center. Flash user’s guide, version 3.2, Tech. report, University of Chicago, 2009. [Google Scholar]
  4. G. E. Barter and D. L. Darmofal. Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation. Journal of Computational Physics, 229 (2010), No. 5, 1810-1827. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Bassi and S. Rebay. Accurate 2D Euler computations by means of a high order discontinuous finite element method. XIVth ICN MFD (Bangalore, India), Springer, 1994. [Google Scholar]
  6. F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini. A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics (Antwerpen, Belgium) (R. Decuypere and G. Dibelius, eds.), Technologisch Instituut, (1997), 99-108. [Google Scholar]
  7. N. Bell, M. Garland. Efficient sparse matrix-vector multiplication on CUDA. NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, 2008. [Google Scholar]
  8. P. Bogacki, L. F. Shampine. A 3(2) pair of Runge-Kutta formulas. Applied Mathematics Letters, 2 (1989), No. 4, 321-325. [Google Scholar]
  9. P. Borwein, T. Erdelyi. Polynomials and polynomial inequalities. first ed., Springer, 1995. [Google Scholar]
  10. A. Burbeau, P. Sagaut, Ch. H. Bruneau. A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods. Journal of Computational Physics, 169 (2001), No. 1, 111-150. [CrossRef] [MathSciNet] [Google Scholar]
  11. E. Burman. On nonlinear artificial viscosity, discrete maximum principle and hyperbolic conservation laws. BIT Numerical Mathematics, 47 (2007), No. 4, 715-733. [CrossRef] [MathSciNet] [Google Scholar]
  12. B. Cockburn, J. Guzmán. Error estimates for the Runge-Kutta discontinuous Galerkin method for the transport equation with discontinuous initial data. SIAM Journal on Numerical Analysis, 46 (2008), No. 3, 1364-1398. [Google Scholar]
  13. B. Cockburn and C. W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Mathematics of Computation, 52 (1989), No. 186, 411-435. [Google Scholar]
  14. B. Cockburn, S. Hou, C.-W. Shu. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: the multidimensional case. Mathematics of Computation, 54 (1990), No. 190, 545-581. [Google Scholar]
  15. B. Cockburn, S.-Y. Lin, C.-W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. Journal of Computational Physics, 84 (1989), No. 1, 90-113. [Google Scholar]
  16. B. Cockburn, C.-W. Shu. The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. Journal of Computational Physics, 141 (1998), No. 2, 199-224. [Google Scholar]
  17. P. J. Davis. Interpolation and approximation. Blaisdell Pub. Co., 1963. [Google Scholar]
  18. V. Dolejsi, M. Feistauer, C. Schwab. On some aspects of the discontinuous Galerkin finite element method for conservation laws. Mathematics and Computers in Simulation, 61 (2003), No. 3-6, 333-346. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. R. Dormand, P. J. Prince. A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics, 6 (1980), No. 1, 19-26. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Dubiner. Spectral methods on triangles and other domains. Journal of Scientific Computing, 6 (1991), 345-390. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Efraimsson, G. Kreiss. A remark on numerical errors downstream of slightly viscous shocks. SIAM Journal on Numerical Analysis, 36 (1999), No. 3, 853-863. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. Ern, A. F. Stephansen, P. Zunino. A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity. IMA Journal of Numerical Analysis, 29 (2009), No. 2, 235. [Google Scholar]
  23. M. Feistauer, V. Kučera. On a robust discontinuous Galerkin technique for the solution of compressible flow. Journal of Computational Physics, 224 (2007), No. 1, 208-221. [Google Scholar]
  24. J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco, L. H. Ziantz. Adaptive local refinement with octree load balancing for the parallel solution of three-dimensional conservation laws. Journal of Parallel and Distributed Computing, 47 (1997), No. 2, 139-152. [CrossRef] [Google Scholar]
  25. D. Gottlieb, C.-W. Shu. On the Gibbs phenomenon and its resolution. SIAM Review, 39 (1997), No. 4, 644-668. [CrossRef] [MathSciNet] [Google Scholar]
  26. S. Gottlieb, D. Ketcheson, C.-W. Shu. Strong stability preserving time discretizations. World Scientific, 2011. [Google Scholar]
  27. P. M. Gresho, R. L. Lee. Don’t suppress the wiggles-they’re telling you something!. Computers Fluids, 9 (1981), No. 2, 223-253. [CrossRef] [MathSciNet] [Google Scholar]
  28. J.-L. Guermond, R. Pasquetti. Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. Comptes Rendus Mathematique, 346 (2008), No. 13-14, 801-806. [Google Scholar]
  29. M. Harris. Optimizing parallel reduction in CUDA. Tech. report, Nvidia Corporation, Santa Clara, CA, 2007. [Google Scholar]
  30. R. Hartmann. Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 51 (2006), No. 9, 1131-1156. [Google Scholar]
  31. J. S. Hesthaven, T. Warburton. Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. Springer, 2007. [Google Scholar]
  32. P. Houston, E. Suli. A note on the design of hp-adaptive finite element methods for elliptic partial differential equations. Computer Methods in Applied Mechanics and Engineering, 194 (2005), No. 2-5, 229-243. [CrossRef] [MathSciNet] [Google Scholar]
  33. J. Jaffre, C. Johnson, and A. Szepessy. Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws. Math. Models Methods Appl. Sci., 5 (1995), No. 3, 367-386. [Google Scholar]
  34. V. John, E. Schmeyer. Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion. Computer Methods in Applied Mechanics and Engineering, 198 (2008), No. 3-4, 475-494. [Google Scholar]
  35. R. M. Kirby, S. J. Sherwin. Stabilisation of spectral/hp element methods through spectral vanishing viscosity: Application to fluid mechanics modelling. Computer Methods in Applied Mechanics and Engineering, 195 (2006), No. 23-24, 3128-3144. [Google Scholar]
  36. A. Klöckner, T. Warburton, J. Bridge, J. S. Hesthaven. Nodal discontinuous Galerkin methods on graphics processors. J. Comp. Phys., 228 (2009), 7863-7882. [Google Scholar]
  37. T. Koornwinder. Two-variable analogues of the classical orthogonal polynomials. Theory and Applications of Special Functions (1975), 435-495. [Google Scholar]
  38. G. Kreiss, G. Efraimsson, J. Nordstrom. Elimination of first order errors in shock calculations. SIAM Journal on Numerical Analysis, 38 (2001), No. 6, 1986-1998. [CrossRef] [MathSciNet] [Google Scholar]
  39. L. Krivodonova. Limiters for high-order discontinuous Galerkin methods. Journal of Computational Physics, 226 (2007), No. 1, 879-896. [Google Scholar]
  40. D. Kuzmin, R. Löhner, S. Turek. Flux-corrected transport. Springer, 2005. [Google Scholar]
  41. A. Lapidus. A detached shock calculation by second-order finite differences. Journal of Computational Physics, 2 (1967), No. 2, 154-177. [CrossRef] [Google Scholar]
  42. P. D. Lax. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on Pure and Applied Mathematics, 7 (1954), No. 1, 159-193. [Google Scholar]
  43. P. Lesaint, P. A. Raviart. On a finite element method for solving the neutron transport equation. Mathematical aspects of finite elements in partial differential equations, (1974), 89-123. [Google Scholar]
  44. F. Lorcher, G. Gassner, C.-D. Munz. An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations. J. Comp. Phys., 227 (2008), 5649-5670. [Google Scholar]
  45. C. Mavriplis. Adaptive mesh strategies for the spectral element method. Computer Methods in Applied Mechanics and Engineering, 116 (1994), No. 1-4, 77-86. [CrossRef] [MathSciNet] [Google Scholar]
  46. P. Persson, J. Peraire. Sub-cell shock capturing for discontinuous Galerkin methods. Proc. of the 44th AIAA Aerospace Sciences Meeting and Exhibit, 112 (2006). [Google Scholar]
  47. J. Proft, B. Riviere. Discontinuous Galerkin methods for convection-diffusion equations for varying and vanishing diffusivity. Int. J. Num. Anal. Mod., 6 (2009), No. 4, 533-561. [Google Scholar]
  48. W. H. Reed, T. R. Hill. Triangular mesh methods for the neutron transport equation. Tech. report, Los Alamos Scientific Laboratory, Los Alamos, 1973. [Google Scholar]
  49. F. Rieper. On the dissipation mechanism of upwind-schemes in the low Mach number regime: A comparison between Roe and HLL. Journal of Computational Physics, 229 (2010), No. 2, 221-232. [Google Scholar]
  50. C.-W. Shu, S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 83 (1989), No. 1, 32-78. [Google Scholar]
  51. C.W. Shu. Total-variation-diminishing time discretizations. SIAM Journal on Scientific and Statistical Computing, 9 (1988), 1073-1086. [CrossRef] [Google Scholar]
  52. J. W. Slater, J. C. Dudek, K. E. Tatum, et al. The NPARC alliance verification and validation archive. 2009. [Google Scholar]
  53. G. A. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27 (1978), No. 1, 1-31. [CrossRef] [MathSciNet] [Google Scholar]
  54. J. M. Stone. Athena test archive. 2009. [Google Scholar]
  55. E. Tadmor. Convergence of spectral methods for nonlinear conservation laws. SIAM Journal on Numerical Analysis, 26 (1989), No. 1, 30-44. [Google Scholar]
  56. S. Tu, S. Aliabadi. A slope limiting procedure in discontinuous Galerkin finite element method for gas dynamics applications. International Journal of Numerical Analysis and Modeling, 2 (2005), No. 2, 163-178. [MathSciNet] [Google Scholar]
  57. J. von Neumann, R. Richtmyer. A method for the numerical calculation of hydrodynamic shocks. Journal of Applied Physics, 21 (1950), 232-237. [CrossRef] [MathSciNet] [Google Scholar]
  58. T. Warburton. An explicit construction of interpolation nodes on the simplex. J. Eng. Math., 56 (2006), 247-262. [CrossRef] [Google Scholar]
  59. T. Warburton, T. Hagstrom. Taming the CFL number for discontinuous Galerkin Methods on structured meshes. SIAM J. Num. Anal., 46 (2008), 3151-3180. [Google Scholar]
  60. T. C. Warburton, I. Lomtev, Y. Du, S. J. Sherwin, G. E. Karniadakis. Galerkin and discontinuous Galerkin spectral/hp methods. Computer Methods in Applied Mechanics and Engineering, 175 (1999), No. 3-4, 343-359. [CrossRef] [MathSciNet] [Google Scholar]
  61. P. Woodward, P. Colella. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 54 (1984), No. 1, 115-173. [Google Scholar]
  62. Z. Xu, J. Xu, C.-W. Shu. A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws. Tech. Report 2010-14, Scientific Computing Group, Brown University, Providence, RI, USA, 2010. [Google Scholar]
  63. Z. Xu, Y. Liu, C.-W. Shu. Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells. Journal of Computational Physics, 228 (2009), No. 6, 2194-2212. [CrossRef] [MathSciNet] [Google Scholar]
  64. Y. C. Zhou, G. W. Wei. High resolution conjugate filters for the simulation of flows. Journal of Computational Physics, 189 (2003), No. 1, 159-179. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.