Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 3, 2011
Computational aerodynamics
Page(s) 84 - 96
DOI https://doi.org/10.1051/mmnp/20116304
Published online 16 May 2011
  1. P. E. Bernard, J. F. Remacle, R. Comblen, V. Legat, K. Hillewaert. High-order discontinuous Galerkin schemes on general 2D manifolds applied to the shallow water equations. J. Comput. Phys., 228 (2009), No. 17, 6514–6535. [CrossRef] [MathSciNet] [Google Scholar]
  2. C. D. Cantwell, S. J. Sherwin, R. M. Kirby, P. H. J. Kelly. From h to p efficiently: strategy selection for operator evaluation on hexahedral and tetrahedral elements. Computers and Fluids, 43 (2011), No. 1, 23–28. [CrossRef] [Google Scholar]
  3. M. O. Deville, P. F. Fischer, E. H. Mund. High-order methods for incompressible fluid flow. Cambridge University Press, Cambridge, 2002. [Google Scholar]
  4. M. Dubiner. Spectral methods on triangles and other domains. J. Sci. Comp., 6 (1991), No. 4, 345-390. [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Gottlieb, S. A. Orszag. Numerical analysis of spectral methods: theory and applications. Society for Industrial Mathematics, 1977. [Google Scholar]
  6. J. S. Hesthaven, T. Warburton. Nodal high-order methods on unstructured grids:: I. time–domain solution of MaxwellŠs equations. J. Comput. Phys., 181 (2002), No. 1, 186-221. [CrossRef] [MathSciNet] [Google Scholar]
  7. T. J. R. Hughes. The finite element method. Prentice-Hall, New Jersey, 1987. [Google Scholar]
  8. G. E. Karniadakis and S. J. Sherwin. Spectral/hp element methods for computational fluid dynamics. Oxford University Press, Oxford, second edition edition, 2005. [Google Scholar]
  9. U. Lee. Spectral element method in structural dynamics. Wiley, 2009. [Google Scholar]
  10. S. A. Orszag. Spectral methods for problems in complex geometries. Advances in computer methods for partial differential equations- III, (1979), 148-157. [Google Scholar]
  11. A. T. Patera. A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys., 54 (1984), No. 3, 468-488. [CrossRef] [Google Scholar]
  12. S. J. Sherwin, G. E. Karniadakis. Tetrahedral hp finite elements: Algorithms and flow simulations. J. Comput. Phys., 124 (1996), 14-45. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. J. Sherwin. Hierarchical hp finite elements in hybrid domains. Finite Elements in Analysis and Design, 27 (1997), No 1, 109-119. [CrossRef] [MathSciNet] [Google Scholar]
  14. B. F. Smith, P. Bjorstad, W. Gropp. Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, 2004. [Google Scholar]
  15. P. E. J. Vos, S. J. Sherwin, M. Kirby. From h to p efficiently: Implementing finite and spectral/hp element discretisations to achieve optimal performance at low and high order approximations. J. Comput. Phys., 229 (2010), 5161-5181. [CrossRef] [MathSciNet] [Google Scholar]
  16. O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu. The finite element method: its basis and fundamentals. Elsevier Butterworth Heinemann, 2005. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.