Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 3, 2011
Computational aerodynamics
Page(s) 84 - 96
DOI https://doi.org/10.1051/mmnp/20116304
Published online 16 May 2011
  1. P. E. Bernard, J. F. Remacle, R. Comblen, V. Legat, K. Hillewaert. High-order discontinuous Galerkin schemes on general 2D manifolds applied to the shallow water equations. J. Comput. Phys., 228 (2009), No. 17, 6514–6535. [CrossRef] [MathSciNet]
  2. C. D. Cantwell, S. J. Sherwin, R. M. Kirby, P. H. J. Kelly. From h to p efficiently: strategy selection for operator evaluation on hexahedral and tetrahedral elements. Computers and Fluids, 43 (2011), No. 1, 23–28. [CrossRef]
  3. M. O. Deville, P. F. Fischer, E. H. Mund. High-order methods for incompressible fluid flow. Cambridge University Press, Cambridge, 2002.
  4. M. Dubiner. Spectral methods on triangles and other domains. J. Sci. Comp., 6 (1991), No. 4, 345-390. [CrossRef] [MathSciNet]
  5. D. Gottlieb, S. A. Orszag. Numerical analysis of spectral methods: theory and applications. Society for Industrial Mathematics, 1977.
  6. J. S. Hesthaven, T. Warburton. Nodal high-order methods on unstructured grids:: I. time–domain solution of MaxwellŠs equations. J. Comput. Phys., 181 (2002), No. 1, 186-221. [CrossRef] [MathSciNet]
  7. T. J. R. Hughes. The finite element method. Prentice-Hall, New Jersey, 1987.
  8. G. E. Karniadakis and S. J. Sherwin. Spectral/hp element methods for computational fluid dynamics. Oxford University Press, Oxford, second edition edition, 2005.
  9. U. Lee. Spectral element method in structural dynamics. Wiley, 2009.
  10. S. A. Orszag. Spectral methods for problems in complex geometries. Advances in computer methods for partial differential equations- III, (1979), 148-157.
  11. A. T. Patera. A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys., 54 (1984), No. 3, 468-488. [CrossRef]
  12. S. J. Sherwin, G. E. Karniadakis. Tetrahedral hp finite elements: Algorithms and flow simulations. J. Comput. Phys., 124 (1996), 14-45. [CrossRef] [MathSciNet]
  13. S. J. Sherwin. Hierarchical hp finite elements in hybrid domains. Finite Elements in Analysis and Design, 27 (1997), No 1, 109-119. [CrossRef] [MathSciNet]
  14. B. F. Smith, P. Bjorstad, W. Gropp. Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, 2004.
  15. P. E. J. Vos, S. J. Sherwin, M. Kirby. From h to p efficiently: Implementing finite and spectral/hp element discretisations to achieve optimal performance at low and high order approximations. J. Comput. Phys., 229 (2010), 5161-5181. [CrossRef] [MathSciNet]
  16. O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu. The finite element method: its basis and fundamentals. Elsevier Butterworth Heinemann, 2005.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.