Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 3, 2011
Computational aerodynamics
Page(s) 97 - 140
DOI https://doi.org/10.1051/mmnp/20116305
Published online 16 May 2011
  1. R. Abgrall. On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. ICASE Report 92-74, (1992). [Google Scholar]
  2. W. Anderson, J. Thomas, and D. Whitfield. Multigrid acceleration of the flux-split euler equations. AIAA Journal, 26 (1988), No. 6, 649-654. [CrossRef] [Google Scholar]
  3. D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontinuous galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39 (2001), No. 5, 1749-1779. [Google Scholar]
  4. G. E. Barter and D. L. Darmofal. Shock capturing with higher-order PDE-based artificial viscosity. AIAA Paper 2007-3823, 2007. [Google Scholar]
  5. G. E. Barter and D. L. Darmofal. Shock capturing with PDE-based artificial viscosity for DGFEM. J. Comput. Phys., 229 (2010), No. 5, 1810-1827. [Google Scholar]
  6. T. J. Barth and H. Deconinck. High-order methods for computational physics. Springer Verlag, 1999. [Google Scholar]
  7. T. J. Barth and P. O. Frederickson. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA Paper 90-0013, 1990. [Google Scholar]
  8. F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys., 131 (1997), No. 2, 267-279. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Bassi and S. Rebay. High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys., 138 (1997), No. 2, 251-285. [Google Scholar]
  10. A. Bhagatwala and S. K. Lele. A modified artificial viscosity approach for compressible turbulence simulations. J. Comput. Phys., 228 (2009), 4965-4969. [CrossRef] [Google Scholar]
  11. A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Method. Appl. M., 32 (1982), 199-259. [Google Scholar]
  12. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral methods: Fundamentals in single domains. Springer, 2006. [Google Scholar]
  13. P. Castonguay, C. Liang, and A. Jameson. Simulation of transitional flow over airfoils using the spectral difference method. AIAA Paper 2010-4626, 2010. [Google Scholar]
  14. D. Caughey. Diagonal implicit multigrid algorithm for the Euler equations. AIAA Journal, 26 (1988), 841-851. [CrossRef] [Google Scholar]
  15. R. F. Chen and Z. J. Wang. Fast, block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids. AIAA Journal, 38 (2000) 2238-2245. [CrossRef] [Google Scholar]
  16. B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal., 47 (2009), No. 2, 1319-1365. [CrossRef] [MathSciNet] [Google Scholar]
  17. B. Cockburn, S. Hou, and C. W. Shu. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comput., 54 (1990), 545-581. [Google Scholar]
  18. B. Cockburn, G. E. Karniadakis, and C. W. Shu. Discontinuous Galerkin methods: Theory, computation and applications. Springer, 2000. [Google Scholar]
  19. B. Cockburn, S. Y. Lin, and C. W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems. J. Comput. Phys., 84 (1989), No. 1, 90-113. [CrossRef] [MathSciNet] [Google Scholar]
  20. B. Cockburn and C. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math. Comput., 52 (1989), 411-435. [Google Scholar]
  21. B. Cockburn and C. W. Shu. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal., 35 (1998), No. 6, 2440-2463. [CrossRef] [MathSciNet] [Google Scholar]
  22. B. Cockburn and C. W. Shu. The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. J. Comput. Phys., 141 (1998), No. 2, 199-224. [CrossRef] [MathSciNet] [Google Scholar]
  23. B. Cockburn and C. W. Shu. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput., 16 (2001), No. 3, 173-261. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. W. Cook. Artificial fluid properties for large-eddy simulation of compressible turbulent mixing. Phys. Fluids, 19 (2007), 55-103. [Google Scholar]
  25. A. W. Cook and W. H. Cabot. A high-wavenumber viscosity for high-resolution numerical methods. J. Comput. Phys., 195 (2004), No. 2, 594-601. [CrossRef] [Google Scholar]
  26. A. W. Cook and W. H. Cabot. Hyperviscosity for shock-turbulence interactions. J. Comput. Phys., 203 (2005), 379-385. [CrossRef] [Google Scholar]
  27. J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric analysis: Toward integration of CAD and FEA. Wiley, 2009. [Google Scholar]
  28. M. Delanaye and Y. Liu. uadratic reconstruction finite volume schemes on 3D arbitrary unstructured polyhedral grids. AIAA Paper 1999-3259, 1999. [Google Scholar]
  29. M. O. Deville, P. F. Fischer, and E. H. Mund. High-order methods for incompressible fluid flow. Cambridge University Press, 2002. [Google Scholar]
  30. S. Dey, R. M. O’bara, and M. S. Shephard. Curvilinear mesh generation in 3D. In Proceedings of the Eighth International Meshing Roundtable, John Wiley & Sons, (1999) 407-417. [Google Scholar]
  31. V. Dolean, H. Fahs, L. Fezoui, and S. Lanteri. Locally implicit discontinuous Galerkin method for time domain electromagnetics. J. Comput. Phys., 229 (2010), No 2, 512-526. [CrossRef] [MathSciNet] [Google Scholar]
  32. J. Douglas and T. Dupont. Interior penalty procedures for elliptic and parabolic Galerkin methods. In Computing Methods in Applied Sciences (Second International Symposium, Versailles, 1975), Springer, (1976), 207-216. [Google Scholar]
  33. Y. Dubief and F. Delcayre. On coherent-vortex identification in turbulence. J. Turbul., 1 (2000), No. 11, 1-22. [Google Scholar]
  34. M. Dumbser, D. S. Balsara, E. F. Toro, and C. D. Munz. A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys., 227 (2008), 8209-8253. [CrossRef] [MathSciNet] [Google Scholar]
  35. J. K. Fidkowski and D. L. Darmofal. Output-based error estimation and mesh adaptation in computational fluid dynamics: Overview and recent results. AIAA Paper 2009-1303, 2009. [Google Scholar]
  36. K. J. Fidkowski, T. A. Oliver, J. Lu, and D. L. Darmofal. p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput. Phys., 207 (2005), No. 1, 92-113. [CrossRef] [Google Scholar]
  37. K. J. Fidkowski and P. L. Roe. An entropy adjoint approach to mesh refinement. SIAM J Sci Comput, 32 (2010), No. 3, 261-1287. [Google Scholar]
  38. O. Friedrich. Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys., 144 (1998), No. 1, 194-212. [CrossRef] [MathSciNet] [Google Scholar]
  39. M. Galbraith and M. Visbal. Implicit large eddy simulation of low Reynolds number flow past the SD7003 airfoil. AIAA Paper 2008-225, 2008. [Google Scholar]
  40. H. Gao, Z. J. Wang, and Y. Liu. A study of curved boundary representations for 2D high order Euler solvers. J. Sci. Comput., 44 (2010), 323-336. [CrossRef] [MathSciNet] [Google Scholar]
  41. G. Gassner, F. Lorcher, and C. D. Munz. A discontinuous Galerkin scheme based on a space-time expansion II: Viscous flow equations in multi dimensions. J. Sci. Comput., 34 (2008), No. 3, 260-286. [CrossRef] [MathSciNet] [Google Scholar]
  42. C. Geuzaine and J. Remacle. Gmsh: A 3D finite element mesh generator with built-in pre and post-processing facilities. Int. J. Numer. Meth. Eng., 79 (2009), No. 11, 1309-1331. [Google Scholar]
  43. S. Gottlieb, C. W. Shu, and E. Tadmor. Strong stability-preserving high-order time discretization methods. SIAM Review, 43 (2001), No. 1, 89-112. [CrossRef] [MathSciNet] [Google Scholar]
  44. T. Haga, H. Gao, and Z. J. Wang. A high-order unifying discontinuous formulation for 3D mixed grids. AIAA Paper 2010-540, 2010. [Google Scholar]
  45. T. Haga, K. Sawada, and Z. J. Wang. An implicit LU-SGS scheme for the spectral volume method on unstructured tetrahedral grids. Commun. Comput. Phys., 6 (2009), No. 5, 978-996. [Google Scholar]
  46. A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 49 (1983), No. 3, 357-393. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  47. A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy. Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys., 72 (1987), No. 2, 231-303. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  48. R. Hartmann. Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier–Stokes equations. Int. J. Numer. Meth. Fluids, 51 (2006), 1131-1156. [CrossRef] [MathSciNet] [Google Scholar]
  49. B. T. Helenbrook and H. L. Atkins. Solving discontinuous Galerkin formulations of Poisson’s equation using geometric and p-multigrid. AIAA Journal, 46 (2008), No. 4, 894-916. [CrossRef] [Google Scholar]
  50. J. S. Hesthaven and D. Gottlieb. Stable spectral methods for conservation laws on triangles with unstructured grids. Comput. Method Appl. M., 175 (1999), 361-381. [CrossRef] [Google Scholar]
  51. J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods - Algorithms, analysis, and applications. Springer, 2008. [Google Scholar]
  52. C. Hu and C. W. Shu. Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys., 150 (1999), No. 1, 97-127. [CrossRef] [MathSciNet] [Google Scholar]
  53. T. J. R. Hughes and A. N. Brooks. A multidimensional upwind scheme with no crosswind diffusion. In T. J. R. Hughes, editor, Finite element methods for convection dominated flows, ASME, New York, (1979), 19-35. [Google Scholar]
  54. T. J. R. Hughes and A. N. Brooks. A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the streamline upwind procedure. In R. H. Gallagher, D. H. Norrie, J. T. Oden, and O. C. Zienkiewicz, editors, Finite elements in fluids, volume IV, Wiley, London, (1982), 46-65. [Google Scholar]
  55. T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Method Appl. M., 194 (2005), 4135-4195. [Google Scholar]
  56. T. J. R. Hughes and M. Mallet. A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems. Comput. Method Appl. M., 58 (1986), 305-328. [CrossRef] [Google Scholar]
  57. T. J. R. Hughes, M. Mallet, and A. Mizukami. A new finite element formulation for computational fluid dynamics: II. beyond SUPG. Comput. Method Appl. M., 54 (1986), 341-355. [Google Scholar]
  58. H. T. Huynh. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. AIAA Paper 2007-4079, 2007. [Google Scholar]
  59. H. T. Huynh. A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion. AIAA Paper 2009-403, 2009. [Google Scholar]
  60. F. Iacono and G. May. Convergence acceleration for simulation of steady-state compressible flows using high-order schemes. AIAA Paper 2009-4132, 2009. [Google Scholar]
  61. F. Iacono, G. May, and Z. J. Wang. Relaxation techniques for high-order discretizations of steady compressible inviscid flows. AIAA Paper 2010-4991, 2010. [Google Scholar]
  62. A. Jameson. Solution of the Euler equations for two dimensional transonic flow by a multigrid method. Appl. Math. Comput., 13 (1983), No. 3, 327-356. [CrossRef] [MathSciNet] [Google Scholar]
  63. A. Jameson. A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput., 45 (2010), 348-358. [CrossRef] [MathSciNet] [Google Scholar]
  64. A. Jameson and T. J. Baker. Solution of the Euler equations for complex configurations. AIAA Paper 83-1929, 1983. [Google Scholar]
  65. A. Jameson and D. A. Caughey. How many steps are required to solve the Euler equations of steady, compressible flow: In search of a fast solution algorithm. AIAA Paper 2001-2673, 2001. [Google Scholar]
  66. A. Jameson, W. Schmidt, and E. Turkel. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA Paper 81-1259, 1981. [Google Scholar]
  67. A. Jameson and S. Yoon. Multigrid solution of the Euler equations using implicit schemes. AIAA Journal, 24 (1986), No. 11, 1737-1743. [CrossRef] [Google Scholar]
  68. A. Jameson and S. Yoon. Lower-upper implicit schemes with multiple grids for the Euler equations. AIAA Journal, 25 (1987), No. 7, 929-935. [Google Scholar]
  69. K. D. Jones, C. M. Dohring, and M. F. Platzer. Experimental and computational investigation of the Knoller-Betz effect. AIAA Journal, 36 (1998), 780-783. [Google Scholar]
  70. R. Kannan and Z. J. Wang. A study of viscous flux formulations for a p-multigrid spectral volume Navier-Stokes solver. J. Sci. Comput., 41 (2009), No. 2, 165-199. [CrossRef] [MathSciNet] [Google Scholar]
  71. G. S. Karamanos and G. E. Karniadakis. A spectral vanishing viscosity method for large-eddy simulations. J. Comput. Phys., 163 (2000), No. 2, 22-50. [CrossRef] [MathSciNet] [Google Scholar]
  72. G. E. Karniadakis and S. J. Sherwin. Spectral/hp element methods for computational fluid dynamics. Oxford Scientific Publications, 2nd edition, 2005. [Google Scholar]
  73. S. Kawai and S. K. Lele. Localized artificial diffusivity scheme for discontinuity capturing on curvilinear meshes. J. Comput. Phys., 227 (2008), No. 22, 9498-9526. [CrossRef] [MathSciNet] [Google Scholar]
  74. R. M. Kirby and S. J. Sherwin. Stabilisation of spectral/hp element methods through spectral vanishing viscosity: Application to fluid mechanics modelling. Comput. Method Appl. M., 195 (2006), 3128-3144. [Google Scholar]
  75. A. Klöckner, T. Warburton, J. Bridge, and J. S. Hesthaven. Nodal discontinuous Galerkin methods on graphics processors. J. Comput. Phys., 228 (2009), No. 21, 7863-7882. [CrossRef] [MathSciNet] [Google Scholar]
  76. D. A. Kopriva and J. H. Kolias. A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys., 125 (1996), No. 1, 244-261. [CrossRef] [MathSciNet] [Google Scholar]
  77. R. J. Leveque. Finite volume methods for hyperbolic problems. Cambridge University Press, 2002. [Google Scholar]
  78. Y. Li, S. Premasuthan, and A. Jameson. Comparison of h and p-adaptations for spectral difference methods. AIAA Paper 2010-4435, 2010. [Google Scholar]
  79. C. Liang, A. Jameson, and Z. J. Wang. Spectral difference method for compressible flow on unstructured grids with mixed elements. J. Comput. Phys., 228 (2009), No. 8, 2847-2858. [Google Scholar]
  80. C. Liang, R. Kannan, and Z. J. Wang. A p-multigrid spectral difference method with explicit and implicit smoothers on unstructured triangular grids. Comput. Fluids, 38 (2009), No. 2, 254-265. [CrossRef] [MathSciNet] [Google Scholar]
  81. L. Liu, X. Li, and F. Q. Hu. Nonuniform time-step Runge-Kutta discontinuous Galerkin method for computational aeroacoustics. J. Comput. Phys., 229 (2010), 6874-6897. [CrossRef] [MathSciNet] [Google Scholar]
  82. X. D. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes. J. Comput. Phys., 115 (1994), No. 1, 200-212. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  83. Y. Liu, M. Vinokur, and Z. J. Wang. Spectral difference method for unstructured grids I: Basic formulation. J. Comput. Phys., 216 (2006), No. 2, 780-801. [Google Scholar]
  84. F. Lorcher, G. Gassner, and C. D. Munz. A discontinuous Galerkin scheme based on a space-time expansion I. Inviscid compressible flow in one space dimension. J. Sci. Comput., 32 (2007), No. 2, 175-199. [CrossRef] [MathSciNet] [Google Scholar]
  85. H. Luo, J. D. Baum, and R. Lohner. A p-multigrid discontinuous Galerkin method for the Euler equations on unstructured grids. J. Comput. Phys., 211 (2006), No. 2, 767-783. [CrossRef] [MathSciNet] [Google Scholar]
  86. Y. Maday and R. Munoz. Spectral element multigrid II. Theoretical justification. J. Sci. Comput., 3 (1988), No. 4, 323-353. [CrossRef] [MathSciNet] [Google Scholar]
  87. B. S. Mascarenhas, B. T. Helenbrook, and H. L. Atkins. Coupling p-multigrid to geometric multigrid for discontinuous Galerkin formulations of the convection-diffusion equation. J. Comput. Phys., 229 (2010), No. 10, 3664-3674. [CrossRef] [MathSciNet] [Google Scholar]
  88. D. J. Mavriplis and C. R. Nastase. On the geometric conservation law for high-order discontinuous Galerkin discretizations on dynamically deforming meshes. AIAA Paper 2008-778, 2008. [Google Scholar]
  89. G. May. The spectral difference scheme as a quadrature-free discontinuous Galerkin method. Aachen Institute for Advanced Study Technical Report AICES-2008-11, 2008. [Google Scholar]
  90. G. May and A. Jameson. Efficient relaxation methods for high-order discretization of steady problems. In Adaptive high-order methods in computational fluid dynamics (advances in computational fluid dynamics). In Press. [Google Scholar]
  91. C. R. Nastase and D. J. Mavriplis. High-order discontinuous Galerkin methods using an hp-multigrid approach. J. Comput. Phys., 213 (2006), No. 2, 330-357. [CrossRef] [Google Scholar]
  92. N. C. Nguyen, J. Peraire, and B. Cockburn. An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations. J. Comput. Phys., 228 (2009), No. 9, 3232-3254. [CrossRef] [MathSciNet] [Google Scholar]
  93. N. C. Nguyen, J. Peraire, and B. Cockburn. An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations. J. Comput. Phys., 228 (2009), No. 23, 8841-8855. [CrossRef] [MathSciNet] [Google Scholar]
  94. N. C. Nguyen, J. Peraire, and B. Cockburn. An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys., In press, 2010. [Google Scholar]
  95. C. F. Ollivier-Gooch. Quasi-ENO schemes for unstructured meshes based on unlimited data-dependent least-squares reconstruction. J. Comput. Phys., 133 (1997), No. 1, 6-17. [CrossRef] [MathSciNet] [Google Scholar]
  96. K. Ou and A. Jameson. A high-order spectral difference method for fluid-structure interaction on dynamic deforming meshes. AIAA Paper 2010-4932, 2010. [Google Scholar]
  97. K. Ou, C. Liang, and A. Jameson. A high-order spectral difference method for the Navier-Stokes equations on unstructured moving deformable grids. AIAA Paper 2010-541, 2010. [Google Scholar]
  98. K. Ou, C. Liang, S. Premasuthan, and A. Jameson. High-order spectral difference simulation of laminar compressible flow over two counter-rotating cylinders. AIAA Paper 2009-3956, 2009. [Google Scholar]
  99. M. Parsani, K. van den Abeele, C. Lacor, and E. Turkel. Implicit LU-SGS algorithm for high-order methods on unstructured grid with p-multigrid strategy for solving the steady Navier-Stokes equations. J. Comput. Phys., 229 (2010), No. 3, 828-850. [CrossRef] [MathSciNet] [Google Scholar]
  100. J. Peraire and P. Persson. The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput., 30 (2008), No. 4, 1806-1824. [CrossRef] [MathSciNet] [Google Scholar]
  101. P. Persson, J. Bonet, and J. Peraire. Discontinuous Galerkin solution of the Navier-Stokes equations on deformable domains. Comput. Method Appl. M., 198 (2009), 1585-1595. [Google Scholar]
  102. P. Persson and J. Peraire. Sub-cell shock capturing for discontinuous Galerkin methods. AIAA Paper 2006-112, 2006. [Google Scholar]
  103. P. Persson and J. Peraire. Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-Stokes equations. SIAM J. Sci. Comput., 30 (2008), No. 6, 2709-2722. [CrossRef] [MathSciNet] [Google Scholar]
  104. P. Persson and J. Peraire. Curved mesh generation and mesh refinement using Lagrangian solid mechanics. AIAA Paper 2009-949, 2009. [Google Scholar]
  105. P. Persson, D. J. Willis, and J. Peraire. The numerical simulation of flapping wings at low Reynolds numbers. AIAA Paper 2010-724, 2010. [Google Scholar]
  106. S. Premasuthan, C. Liang, and A. Jameson. A spectral difference method for viscous compressible flows with shocks. AIAA Paper 2009-3785, June 2009. [Google Scholar]
  107. S. Premasuthan, C. Liang, and A. Jameson. Computation of flows with shocks using spectral difference scheme with artificial viscosity. AIAA Paper 2010-1449, 2010. [Google Scholar]
  108. S. Premasuthan, C. Liang, A. Jameson, and Z. J. Wang. A p-multigrid spectral difference method for viscous compressible flow using 2D quadrilateral meshes. AIAA Paper 2009-950, 2009. [Google Scholar]
  109. J. Qiu and C. W. Shu. Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput., 26 (2005), No. 3, 907-929. [CrossRef] [MathSciNet] [Google Scholar]
  110. R. Radespiel, J. Windte, and U. Scholz. Numerical and experimental flow analysis of moving airfoils with laminar separation bubbles. AIAA Journal, 45 (2007), 1346-1356. [CrossRef] [Google Scholar]
  111. W. H. Reed and T. R. Hill. T riangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos National Laboratory, New Mexico, USA, 1973. [Google Scholar]
  112. P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43 (1981), No. 2, 357-372. [Google Scholar]
  113. E. M. Ronquist and A. T. Patera. Spectral element multigrid I. Formulation and numerical results. J. Sci. Comput., 2 (1987), No. 4, 389-406. [Google Scholar]
  114. R. Sevilla, S. Fernandez-Mendez, and A. Huerta. NURBS-enhanced finite element method for Euler equations. Int. J. Numer. Meth. Fluids, 57 (2008), No. 9, 1051-1069. [CrossRef] [Google Scholar]
  115. R. Sevilla, S. Fernandez-Mendez, and A. Huerta. NURBS-enhanced finite element method (NEFEM). Int. J. Numer. Meth. Engng., 76 (2008), No. 1, 56-83. [CrossRef] [Google Scholar]
  116. S. J. Sherwin and M. Ainsworth. Unsteady Navier-Stokes solvers using hybrid spectral/hp element methods. Appl. Numer. Math., 33 (2000), No. 1, 357-364. [CrossRef] [MathSciNet] [Google Scholar]
  117. S. J. Sherwin and G. E. Karniadakis. A new triangular and tetrahedral basis for high-order (hp) finite element methods. Int. J. Numer. Meth. Eng., 38 (1995), No. 22, 3775-3802. [Google Scholar]
  118. S. J. Sherwin and J. Peiro. Mesh generation in curvilinear domains using high-order elements. Int. J. Numer. Meth. Eng., 53 (2002), No. 1, 207-223. [CrossRef] [Google Scholar]
  119. S. J. Sherwin, T. C. E. Warburton, and G. E. Karniadakis. Spectral/hp methods for elliptic problems on hybrid grids. Contemp. Math., 218 (1998), 191-216. [Google Scholar]
  120. C. W. Shu. Total-variation-diminishing time discretizations. SIAM J. Sci. and Stat. Comput., 9 (1988), No. 6, 1073-1084. [Google Scholar]
  121. C. W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 77 (1988), No. 2, 439-471. [Google Scholar]
  122. J. C. Strikwerda. Finite difference schemes and partial differential equations. SIAM, 2nd edition, 2004. [Google Scholar]
  123. Y. Sun, Z. J. Wang, and Y. Liu. High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys., 2 (2007), 310-333. [Google Scholar]
  124. Y. Sun, Z. J. Wang, and Y. Liu. Efficient implicit non-linear LU-SGS approach for compressible flow computation using high-order spectral difference method. Commun. Comput. Phys., 5 (2009), 760-778. [MathSciNet] [Google Scholar]
  125. E. Tadmor. Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal., 26 (1989), No. 1, 30-44. [CrossRef] [MathSciNet] [Google Scholar]
  126. A. Uranga, P. Persson, M. Drela, and J. Peraire. Implicit large eddy simulation of transitional flows over airfoils and wings. AIAA Paper 2009-4131, 2009. [Google Scholar]
  127. K. Van den Abeele, T. Broeckhoven, and C. Lacor. Dispersion and dissipation properties of the 1d spectral volume method and application to a p-multigrid algorithm. J. Comput. Phys., 224 (2007), No. 2, 616-636. [CrossRef] [MathSciNet] [Google Scholar]
  128. K. Van den Abeele, C. Lacor, and Z. J. Wang. On the connection between the spectral volume and the spectral difference method. J. Comput. Phys., 227 (2007), No. 2, 877-885. [CrossRef] [MathSciNet] [Google Scholar]
  129. K. Van den Abeele, C. Lacor, and Z. J. Wang. On the stability and accuracy of the spectral difference method. J. Sci. Comput., 37 (2008), No. 2, 162-188. [CrossRef] [MathSciNet] [Google Scholar]
  130. B. van Leer. Towards the ultimate conservative difference scheme I. The quest of monotonicity. In Proceedings of the third international conference on numerical methods in fluid mechanics, Springer, (1973), 163-168. [Google Scholar]
  131. B. van Leer. Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys., 14 (1974), No. 4, 361-370. [NASA ADS] [CrossRef] [Google Scholar]
  132. B. van Leer. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J. Comput. Phys., 23 (1977), No. 3, 263-275. [NASA ADS] [CrossRef] [Google Scholar]
  133. B. van Leer. Towards the ultimate conservative difference scheme IV. A new approach to numerical convection. J. Comput. Phys., 23 (1977), No. 3, 276-299. [Google Scholar]
  134. B. van Leer. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov’s method. J. Comput. Phys., 32 (1979), No. 1, 101-136. [Google Scholar]
  135. V. Venkatakrishnan. Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J. Comput. Phys., 118 (1995), No. 1, 120-130. [Google Scholar]
  136. P. E. Vincent, P. Castonguay, and A. Jameson. A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput., (2010), In press. [Google Scholar]
  137. J. von Neumann and R. D. Richtmyer. A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys., 21 (1950), 232-237. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  138. Z. J. Wang. Spectral (finite) volume method for conservation laws on unstructured grids: Basic formulation. J. Comput. Phys., 178 (2002), No. 2, 210-251. [CrossRef] [MathSciNet] [Google Scholar]
  139. Z. J. Wang. High-order methods for the Euler and Navier-Stokes equations on unstructured grids. Prog. Aerosp. Sci., 43 (2007), 1-41. [Google Scholar]
  140. Z. J. Wang and H. Gao. A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J. Comput. Phys., 228 (2009), No. 21, 8161-8186. [CrossRef] [MathSciNet] [Google Scholar]
  141. Z. J. Wang and Y. Liu. Spectral (finite) volume method for conservation laws on unstructured grids II: Extension to two-dimensional scalar equation. J. Comput. Phys., 179 (2002), No. 2, 665-697. [CrossRef] [MathSciNet] [Google Scholar]
  142. Z. J. Wang and Y. Liu. Spectral (finite) volume method for conservation laws on unstructured grids III: One dimensional systems and partition optimization. J. Sci. Comput., 20 (2004), No. 1, 137-157. [Google Scholar]
  143. Z. J. Wang, L. Zhang, and Y. Liu. Spectral (finite) volume method for conservation laws on unstructured grids IV: Extension to two-dimensional systems. J. Comput. Phys., 194 (2004), No. 2, 716-741. [CrossRef] [MathSciNet] [Google Scholar]
  144. A. Wolkov, Ch. Hirsch, and B. Leonard. Discontinuous Galerkin method on unstructured hexahedral grids for 3D Euler and Navier-Stokes equations. AIAA Paper 2007-4078, 2007. [Google Scholar]
  145. S. Yoon and A. Jameson. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations. AIAA Journal, 26 (1988), No. 9, 1025-1026. [CrossRef] [Google Scholar]
  146. Y. Zhang, Y. Bazilevs, S. Goswami, C. L. Bajaj, and T. J. R. Hughes. Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput. Method Appl. M., 196 (2007), 2943-2959. [CrossRef] [Google Scholar]
  147. Y. Zhou and Z. J. Wang. Implicit large eddy simulation of transitional flow over a SD7003 wing using high-order spectral difference method. AIAA Paper 2010-4442, 2010. [Google Scholar]
  148. J. Zhu, J. Qiu, C. W. Shu, and M. Dumbser. Runge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes. J. Comput. Phys., 227 (2008), No. 9, 4330-4353. [CrossRef] [MathSciNet] [Google Scholar]
  149. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The finite element method Its basis and fundamentals. Elsevier, 6th edition, 2005. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.