Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 3, 2011
Computational aerodynamics
Page(s) 141 - 165
DOI https://doi.org/10.1051/mmnp/20116306
Published online 16 May 2011
  1. W.K. Anderson, D.L. Bonhaus. An implicit upwind algorithm for computing turbulent flows on unstructured grids. Comp. and Fluids, 23 (1994), No. 1, 1-21. [CrossRef] [Google Scholar]
  2. W.K. Anderson, V. Venkatakrishnan. Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. Comp. and Fluids, 28 (1999), No. 4, 443-480. [CrossRef] [Google Scholar]
  3. W.K. Anderson, D.L. Bonhaus. Airfoil design on unstructured grids for turbulent flows. AIAA J., 37 (1999), No. 2, 185-191. [CrossRef] [Google Scholar]
  4. O. Baysal, M. Koklu, N. Erbas. Design optimization of micro synthetic jet actuator for flow separation control. J. Fluids Eng., 128 (2006), No. 5, 1053-1062. [CrossRef] [Google Scholar]
  5. T.R. Bewley. Flow control: new challenges for a new renaissance. Prog. in Aero. Sci., 37 (2001), No. 1, 21-58. [CrossRef] [Google Scholar]
  6. R.T. Biedron, J.L. Thomas. Recent enhancements to the FUN3D Flow solver for moving mesh applications. AIAA 2009-1360 (2009). [Google Scholar]
  7. F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, M. Snir. Toward exascale resilience. Int. J. High Perf. Comp. App., 23 (2009), No. 4, 374-388. [CrossRef] [Google Scholar]
  8. S. Choi, M. Potsdam, K. Lee, G. Iaccarino, J.J. Alonso. Helicopter rotor design using a time-spectral and adjoint-based method. AIAA 2008-5810 (2008). [Google Scholar]
  9. S.S. Collis, R.D. Joslin, A. Seifert, V. Theofilis. Issues in active flow control: theory, control, simulation, and experiment. Prog. in Aero. Sci., 40 (2004), No. 4, 237-289. [CrossRef] [Google Scholar]
  10. R. Duvigneau, M. Visonneau. Optimization of a synthetic jet actuator for aerodynamic stall control. Comp. and Fluids, 35 (2006), No. 6, 624-638. [CrossRef] [Google Scholar]
  11. D. Greenblatt, I.J. Wygnanski. The control of flow separation by periodic excitation. Prog. in Aero. Sci., 36 (2000), No. 7, 487-545. [CrossRef] [Google Scholar]
  12. Z.-H. Han, K.-S. Zhang, W.-P. Song, Z.-D. Qiao. Optimization of active flow control over an airfoil using a surrogate-management framework. AIAA J. Aircraft, 47 (2010), No. 2, 603-612. [CrossRef] [Google Scholar]
  13. http://fun3d.larc.nasa.gov, last accessed December 1, 2010. [Google Scholar]
  14. http://wiki.lustre.org/index.php/Main_Page, last accessed December 1, 2010. [Google Scholar]
  15. L. Huang, G. Huang, R. LeBeau. Optimization of airfoil flow control using a genetic algorithm with diversity control. AIAA J. Aircraft, 44 (2007), No. 4, 1337-1349. [CrossRef] [Google Scholar]
  16. W.T. Jones. GridEx – an integrated grid generation package for CFD. AIAA 2003-4129 (2003). [Google Scholar]
  17. L. Kaufman, D. Gay. PORT Library: optimization and mathematical programming – user’s manual. Bell Laboratories, 1997. [Google Scholar]
  18. W.R. Lanser, L.A. Meyn. Forebody flow control on a full-scale F/A-18 aircraft. AIAA J. Aircraft, 31 (1994), No. 6, 1365-1371. [CrossRef] [Google Scholar]
  19. C. Leclerc, E. Levallois, P. Gillieron, A. Kourta. Aerodynamic drag reduction by synthetic jet: a 2D numerical study around a simplified car. AIAA 2006-3337 (2006). [Google Scholar]
  20. E.M. Lee-Rausch, V.N. Vatsa, C.L. Rumsey. Computational analysis of dual radius circulation control airfoils. AIAA 2006-3012 (2006). [Google Scholar]
  21. E.M. Lee-Rausch, D.P. Hammond, E.J. Nielsen, S.Z. Pirzadeh, C.L. Rumsey. Application of the FUN3D unstructured-grid Navier-Stokes solver to the 4th AIAA Drag Prediction Workshop cases. AIAA 2010-4551 (2010). [Google Scholar]
  22. J.N. Lyness. Numerical algorithms based on the theory of complex variables. Proc. ACM 22nd Nat. Conf., Thomas Book Co., Washington, D.C. (1967), 124-134. [Google Scholar]
  23. D.J. Mavriplis. Solution of the unsteady discrete adjoint for three- dimensional problems on dynamically deforming unstructured meshes. AIAA 2008-727 (2008). [Google Scholar]
  24. M. Meunier. Simulation and optimization of flow control strategies for novel high-lift configurations. AIAA J., 47 (2009), No. 5, 1145-1157. [CrossRef] [Google Scholar]
  25. F. Muldoon. Control of a Simplified Unsteady film-cooling flow using gradient-based optimization. AIAA J., 46 (2008), No. 10, 2443-2458. [CrossRef] [Google Scholar]
  26. S. Nadarajah, A. Jameson. Optimal control of unsteady flows using time accurate and non-linear frequency domain methods. AIAA 2002-5436 (2002). [Google Scholar]
  27. J.C. Newman III, A.C. Taylor III, R.W. Barnwell, P.A. Newman, G.J.-W. Hou. Overview of sensitivity analysis and shape optimization for complex aerodynamic configurations. AIAA J. Aircraft, 36 (1999), No. 1, 87-96. [CrossRef] [Google Scholar]
  28. E.J. Nielsen, B. Diskin, N.K. Yamaleev. Discrete adjoint-based design optimization of unsteady turbulent flows on dynamic unstructured grids. AIAA J., 48 (2010), No. 6, 1195-1206. [CrossRef] [Google Scholar]
  29. E.J. Nielsen. Aerodynamic design sensitivities on an unstructured mesh using the Navier-Stokes equations and a discrete adjoint formulation. Ph.D. Dissertation, Dept. of Aero. and Ocean Eng., Virg. Poly. Inst. and St. Univ. (1998). [Google Scholar]
  30. E.J. Nielsen, W.K. Anderson. Recent improvements in aerodynamic design optimization on unstructured meshes. AIAA J., 40 (2002), No. 6, 1155-1163. [CrossRef] [Google Scholar]
  31. E.J. Nielsen, W.K. Anderson. Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations. AIAA J., 37 (1999), No. 11, 1411-1419. [CrossRef] [Google Scholar]
  32. E.J. Nielsen, J. Lu, M.A. Park, D.L. Darmofal. An Implicit, exact dual adjoint solution method for turbulent flows on unstructured grids. Comp. and Fluids, 33 (2004), No. 9, 1131-1155. [CrossRef] [Google Scholar]
  33. E.J. Nielsen, W.L. Kleb. Efficient construction of discrete adjoint operators on unstructured grids by using complex variables. AIAA J., 44 (2006), No. 4, 827-836. [CrossRef] [Google Scholar]
  34. E.J. Nielsen, M.A. Park. Using an adjoint approach to eliminate mesh sensitivities in computational design. AIAA J., 44 (2006), No. 5, 948-953. [CrossRef] [Google Scholar]
  35. M. Nyukhtikov, N. Smelova, B.E. Mitchell, D.G. Holmes. Optimized dual-time stepping technique for time-accurate Navier-Stokes calculation. Proceedings of the 10th Int. Sym. on Unst. Aero., Aeroac., and Aeroelas. of Turbomach. (2003). [Google Scholar]
  36. O.J. Ohanian III, E.D. Karni, W.K. Londenberg, P.A. Gelhausen. Ducted-fan force and moment control via steady and synthetic jets. AIAA 2009-3622 (2009). [Google Scholar]
  37. J.E.V. Peter, R.P. Dwight. Numerical sensitivity analysis for aerodynamic optimization: A survey of approaches. Comp. and Fluids, 39 (2010), No. 3, 373-391. [CrossRef] [Google Scholar]
  38. L. Piegl, W. Tiller. The NURBS book (2nd ed.). Springer-Verlag New York, New York, 1997. [Google Scholar]
  39. S. Pirzadeh. Three-dimensional unstructured viscous grids by the advancing front method. AIAA J., 34 (1996), No. 1, 43-49. [CrossRef] [Google Scholar]
  40. P.L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comp. Phys., 43 (1981), No. 2, 357-372. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  41. J.L. Rogers. A parallel approach to optimum actuator selection with a genetic algorithm. AIAA 2000-4484 (2000). [Google Scholar]
  42. J.M. Rullan, P.P. Vlachos, D.P. Telionis, M.D. Zeiger. Post-stall flow control of sharp-edged wings via unsteady blowing. AIAA J. Aircraft, 43 (2006), No. 6, 1738-1746. [CrossRef] [Google Scholar]
  43. M.P. Rumpfkeil, D.W. Zingg. A general framework for the optimal control of unsteady flows with applications. AIAA 2007-1128 (2007). [Google Scholar]
  44. Y. Saad, M.H. Schultz. GMRES: A generalized minimal residual algorithm for solving Nonsymmetric linear systems. SIAM J. Sci. and Stat. Comp., 7 (1986), No. 3, 856-869. [CrossRef] [MathSciNet] [Google Scholar]
  45. J.A. Samareh. A Novel shape parameterization approach. NASA TM-1999-209116 (1999). [Google Scholar]
  46. J.A. Samareh. Aerodynamic shape optimization based on free-form deformation. AIAA 2004-4630 (2004). [Google Scholar]
  47. A. Seifert, S. David, I. Fono, O. Stalnov, I. Dayan. Roll control via active flow control: From concept to flight. AIAA J. Aircraft, 47 (2010), No. 3, 864-874. [CrossRef] [Google Scholar]
  48. A. Shmilovich, Y. Yadlin. Active flow control for practical high-lift systems. AIAA J. Aircraft, 46 (2009), No. 4, 1354-1364. [CrossRef] [Google Scholar]
  49. P.R. Spalart, S.R. Allmaras. A one-equation turbulence model for aerodynamic flows. La Recherche Aerospatiale, 1 (1994), 5-21. [Google Scholar]
  50. E. Stanewsky. Adaptive wing and flow control technology. Prog. in Aero. Sci., 37 (2001), No. 7, 583-667. [CrossRef] [Google Scholar]
  51. M. Tadjouddine, S.A. Forth, N. Qin. Automatic differentiation of a time-dependent CFD solver for optimisation of a synthetic jet. Presented at the Int. Conf. of Num. Anal. and App. Math., Rhodes, Greece (2005). [Google Scholar]
  52. V.N. Vatsa, M.H. Carpenter, D.P. Lockard. Re-evaluation of an optimized second order backward difference (BDF2OPT) scheme for unsteady flow applications. AIAA 2010-0122 (2010). [Google Scholar]
  53. N. Yamaleev, B. Diskin, E. Nielsen. Local-in-time adjoint-based method for design optimization of unsteady flows. J. Comp. Phys., 229 (2010), No. 14, 5394-5407. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.