Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 4, 2011
Granular hydrodynamics
Page(s) 19 - 36
DOI https://doi.org/10.1051/mmnp/20116402
Published online 18 July 2011
  1. J. J. Brey, J. W. Dufty, A. Santos. Dissipative dynamics for hard spheres. J. Stat. Phys., 87 (1997), 1051–1066. [CrossRef] [Google Scholar]
  2. J. J. Brey, M. J. Ruiz-Montero. Hydrodynamic character of the non-equipartition of kinetic energy in binary granular gases. Phys. Rev. E, 80 (2009), 041306. [CrossRef] [Google Scholar]
  3. N. Brilliantov, T. Pöschel. Kinetic Theory of Granular Gases. Oxford, New York, 2004. [Google Scholar]
  4. S. R. Dahl, C. M.Hrenya, V. Garzó, J. W. Dufty. Kinetic temperatures for a granular mixture. Phys. Rev. E, 66 (2006), 04301. [Google Scholar]
  5. J. W. Dufty. Granular Fluids. R. Meyers, ed. Encyclopedia of Complexity and Systems Science. Springer, Heidelberg, 2009. arXiv:0709.0479. [Google Scholar]
  6. J. W. Dufty. Nonequilibrium Statistical Mechanics and Hydrodynamics for a Granular Fluid. B. Cichocki, M. Napiorkowski, J. Piasecki, eds. 2nd Warsaw School on Statistical Physics. Warsaw University Press, Warsaw, 2008. arXiv:0707.3714. [Google Scholar]
  7. J. W. Dufty, A. Baskaran, J J. Brey. Linear response and hydrodynamics for granular fluids. Phys. Rev. E, 77 (2008), 031310. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. W. Dufty, J. J. Brey. Origins of hydrodynamics for a granular gas. L. Pareschi,G. Russo, G. Toscani eds. Modelling and Numerics of Kinetic Dissipative Systems. Nova Science, NY, 2005; arXiv:cond-mat/0410133. [Google Scholar]
  9. J. Ferziger, H. Kaper. Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam, 1972. [Google Scholar]
  10. D. Forster. Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions. Benjamin, Reading, MA, 1975. [Google Scholar]
  11. V. Garzó, J. Dufty. Homogeneous cooling state for a granular mixture. Phys. Rev. E, 60 (1999), 5706–5713. [CrossRef] [Google Scholar]
  12. I. Goldhirsch. Rapid Granular Flows. Annual Review of Fluid Mechanics, 35 (2003), 267–293. [Google Scholar]
  13. H. Grabert. Projection Operator Techniques in Nonequilibrium Statistical Mechanics. Springer, Berlin, 1982. [Google Scholar]
  14. T. Halsey, A. Mehta, eds. Challenges in Granular Physics. World Scientific, Singapore, 2002. [Google Scholar]
  15. H. Iddir and H. Arastoopour. Modeling of multitype particle flow using the kinetic theory approach. AIChe. J., 51 (2005), 1620–1632. [CrossRef] [Google Scholar]
  16. J. Jenkins, F. Mancini. Balance laws and constitutive relations for plane flows of a dense binary mixture of smooth nearly elastic circular disks. J. Appl. Mech., 54 (1987), 27–34. [CrossRef] [Google Scholar]
  17. D. Jou, J. Casas-Vazquez, G. Lebon. Extended Irreversible Thermodynamics. Rep. Prog. Phys., 51 (1988), 1105. [Google Scholar]
  18. L. P. Kadanoff. Built upon sand: Theoretical ideas inspired by granular flows. Rev. Mod. Phys., 71 (1999), 435–444. [CrossRef] [Google Scholar]
  19. J. Lutsko. Approximate solution of the Enskog equation far from equilibrium. Phys. Rev. Lett., 78 (1997), 243-246. [NASA ADS] [CrossRef] [Google Scholar]
  20. J. Lutsko. Rheology of dense polydisperse granular fluids under shear. Phys. Rev. E, 70 (2004), 061101. [CrossRef] [Google Scholar]
  21. P. Martin, O. Parodi, P. Pershan. Unified Hydrodynamic Theory for Cristals, Liquids, and Normal Fluids. Phys. Rev. A, 6 (1972), 2401-2420. [CrossRef] [Google Scholar]
  22. J. A. McLennan. Introduction to Nonequilibrium Statistical Mechanics. Prentice-Hall, New Jersey, 1989. [Google Scholar]
  23. J. M. Montanero, V. Garzó. Monte Carlo simulations of the homogeneous cooling state for a granular mixture. Granular Matter, 4 (2002), 17–24. [CrossRef] [Google Scholar]
  24. A. Santos, J. Dufty. Strong breakdown of equipartition in uniform gas mixtures. M. S. Ivanov, A. K. Rebrov, eds. Rarefied Gas Dynamics. Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2007. [Google Scholar]
  25. R. Zwanzig. Nonequilibrium Statistical Mechanics, Oxford, NY, 2001. [Google Scholar]
  26. R. Zwanzig. Memory Effects in Irreversible Thermodynamics. Phys. Rev., 124 (1961), 983–992. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.