Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 4, 2011
Granular hydrodynamics
Page(s) 2 - 18
Published online 18 July 2011
  1. A. Barrat, V. Loreto, A. Puglisi. Temperature probes in binary granular gases. Physica A, 334 (2004), No. 3-4, 513–523. [CrossRef]
  2. G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford, 1994.
  3. J. J. Brey, M. I. Garcia de Soria, P. Maynar. Breakdown of the fluctuation-dissipation relations in granular gases. Europhys. Lett., 84 (2008), No. 2, 24002. [CrossRef] [EDP Sciences]
  4. J. J. Brey, J. W. Dufty, C. S. Kim, A. Santos. Hydrodynamics for granular flow at low density. Phys. Rev. E, 58 (1998), No. 4, 4638–4653. [CrossRef]
  5. J. J. Brey, P. Maynar, M. I. Garcia de Soria. Fluctuating hydrodynamics for dilute granular gases. Phys. Rev. E, 79 (2009), No. 5, 051305. [CrossRef]
  6. J. J. Brey, M. J. Ruiz-Montero. Validity of the boltzmann equation to describe low-density granular systems. Phys. Rev. E, 69 (2004), No. 1, 011305. [CrossRef] [MathSciNet]
  7. J. J. Brey, M. J. Ruiz-Montero, F. Moreno. Instability and spatial correlations in a dilute granular gas. Phys. Fluids, 10 (1008), No. 11, 2976–2982. [CrossRef]
  8. J. J. Brey, M. J. Ruiz-Montero, F. Moreno. Steady-state representation of the homogeneous cooling state of a granular gas. Phys. Rev. E, 69 (2004), No. 051303–. [CrossRef]
  9. J.J. Brey, M.I.G. de Soria, P. Maynar, M.J. Ruiz-Montero. Energy fluctuations in the homogeneous cooling state of granular gases. Phys. Rev. E, 70 (2004), No. 1, 011302. [CrossRef]
  10. J.J. Brey, M.J. Ruiz-Montero. Average energy and fluctuations of a granular gas at the threshold of the clustering instability. Granular Matter, 10 (2007), No. 1, 53–59. [CrossRef]
  11. G. Costantini, A. Puglisi. Fluctuating hydrodynamics for dilute granular gases: a Monte Carlo study. Phys. Rev. E, 82 (2010), No. 1, 011305. [CrossRef]
  12. G. Costantini, A. Puglisi, U. Marini Bettolo Marconi. Granular Brownian ratchet model. Phys. Rev. E, 75 (2007), No. 6, 061124–. [CrossRef]
  13. G. Costantini, A. Puglisi, U. Marini Bettolo Marconi. Velocity fluctuations in a one dimensional inelastic Maxwell model. J. Stat. Mech., (2008), P08031.
  14. J. W. Dufty, J. J. Brey. Green-Kubo expressions for a granular gas. J. Stat. Phys., 109 (2002), No. 3-4, 433–448. [CrossRef]
  15. J. Eggers. Sand as Maxwell’s demon. Phys. Rev. Lett., 83 (1999), No. 25, 5322–5325. [CrossRef]
  16. K. Feitosa, N. Menon. Breakdown of energy equipartition in a 2d binary vibrated granular gas. Phys. Rev. Lett., 88 (2002), No. 19, 198301. [CrossRef] [PubMed]
  17. A. L. Garcia, M. Malek Mansour, G. C. Lie, M. Mareschal, E. Clementi. Hydrodynamic fluctuations in a dilute gas under shear. Phys. Rev. A, 36 (1987), No. 9, 4348–4355. [CrossRef] [PubMed]
  18. I. Goldhirsch. Scales and kinetics of granular flows. Chaos, 9 (1999), No. 3, 659–672. [CrossRef] [PubMed]
  19. I. Goldhirsch, G. Zanetti. Clustering instability in dissipative gases. Phys. Rev. Lett., 70 (1993), No. 11, 1619–1622. [NASA ADS] [CrossRef] [PubMed]
  20. R. Kubo, M. Toda, N. Hashitsume. Statistical physics II: Nonequilibrium stastical mechanics. Springer, Berlin, 1991.
  21. L. D. Landau, E. M. Lifchitz. Physique Statistique. Éditions MIR, Moscow, 1967.
  22. J. F. Lutsko. Molecular chaos, pair correlations, and shear-induced ordering of hard spheres. Phys. Rev. Lett., 77 (1996), No. 11, 2225–2228. [CrossRef] [PubMed]
  23. J. F. Lutsko. A model for the atomic-scale structure of the homogeneous cooling state of granular fluids. Phys. Rev. E, 63 (2001), No. 6, 061211. [CrossRef]
  24. M. Mansour Malek, A. L. Garcia, G. C. Lie, E. Clementi. Fluctuating hydrodynamics in a dilute gas. Phys. Rev. Lett., 58 (1987), No. 9, 874–877. [CrossRef] [PubMed]
  25. U. Marini Bettolo Marconi, A. Puglisi. Mean-field model of free-cooling inelastic mixtures. Phys. Rev. E, 65 (2002), No. 5, 051305. [CrossRef]
  26. U. Marini Bettolo Marconi, A. Puglisi, L. Rondoni, A. Vulpiani. Fluctuation-dissipation: Response theory in statistical physics. Phys. Rep., 461 (2008), No. 4-6, 111–195. [CrossRef]
  27. P. Maynar, M. I. G. de Soria, E. Trizac. Fluctuating hydrodynamics for driven granular gases. Eur. Phys. J. Special Topics, 170 (2009), No. 1, 123–139. [CrossRef] [EDP Sciences]
  28. R. Pagnani, U. Marini Bettolo Marconi, A. Puglisi. Driven low density granular mixtures. Phys. Rev. E, 66 (2002), No. 5, 051304. [CrossRef]
  29. T. Pöschel, N. Brilliantov, editors. Granular Gas Dynamics. Lecture Notes in Physics 624. Springer, Berlin, 2003.
  30. T. Pöschel, S. Luding, editors.Granular Gases. Lecture Notes in Physics 564. Springer, Berlin, 2001.
  31. A. Puglisi, A. Baldassarri, V. Loreto. Fluctuation-dissipation relations in driven granular gases. Physical Review E, 66 (2002), No. 6, 061305. [CrossRef]
  32. A. Puglisi, A. Baldassarri, A. Vulpiani. Violations of the Einstein relation in granular fluids: the role of correlations. J. Stat. Mech., (2007), P08016. [CrossRef]
  33. A. Sarracino, D. Villamaina, G. Costantini, A. Puglisi. Granular brownian motion. J. Stat. Mech., (2010) P04013.
  34. A. Sarracino, D. Villamaina, G. Gradenigo, A. Puglisi. Irreversible dynamics of a massive intruder in dense granular fluids. Europhys. Lett., 92 (2010), No. 3, 34001. [CrossRef]
  35. T. C. P. van Noije, M. H. Ernst, R. Brito, J. A. G. Orza. Mesoscopic theory of granular fluids. Phys. Rev. Lett., 79 (1007), No. 3, 411–414. [CrossRef]
  36. D. Villamaina, A. Puglisi, A. Vulpiani. The fluctuation-dissipation relation in sub-diffusive systems: the case of granular single-file diffusion. J. Stat. Mech., (2008), L10001.
  37. P. Visco, A. Puglisi, A. Barrat, F. van Wijland, E. Trizac. Energy fluctuations in vibrated and driven granular gases. Eur. Phys. J. B, 51 (2006), No. 3, 377–387. [CrossRef] [EDP Sciences]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.