Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 4, 2011
Granular hydrodynamics
Page(s) 2 - 18
Published online 18 July 2011
  1. A. Barrat, V. Loreto, A. Puglisi. Temperature probes in binary granular gases. Physica A, 334 (2004), No. 3-4, 513–523. [CrossRef] [Google Scholar]
  2. G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford, 1994. [Google Scholar]
  3. J. J. Brey, M. I. Garcia de Soria, P. Maynar. Breakdown of the fluctuation-dissipation relations in granular gases. Europhys. Lett., 84 (2008), No. 2, 24002. [CrossRef] [EDP Sciences] [Google Scholar]
  4. J. J. Brey, J. W. Dufty, C. S. Kim, A. Santos. Hydrodynamics for granular flow at low density. Phys. Rev. E, 58 (1998), No. 4, 4638–4653. [CrossRef] [Google Scholar]
  5. J. J. Brey, P. Maynar, M. I. Garcia de Soria. Fluctuating hydrodynamics for dilute granular gases. Phys. Rev. E, 79 (2009), No. 5, 051305. [CrossRef] [Google Scholar]
  6. J. J. Brey, M. J. Ruiz-Montero. Validity of the boltzmann equation to describe low-density granular systems. Phys. Rev. E, 69 (2004), No. 1, 011305. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. J. Brey, M. J. Ruiz-Montero, F. Moreno. Instability and spatial correlations in a dilute granular gas. Phys. Fluids, 10 (1008), No. 11, 2976–2982. [CrossRef] [Google Scholar]
  8. J. J. Brey, M. J. Ruiz-Montero, F. Moreno. Steady-state representation of the homogeneous cooling state of a granular gas. Phys. Rev. E, 69 (2004), No. 051303–. [CrossRef] [Google Scholar]
  9. J.J. Brey, M.I.G. de Soria, P. Maynar, M.J. Ruiz-Montero. Energy fluctuations in the homogeneous cooling state of granular gases. Phys. Rev. E, 70 (2004), No. 1, 011302. [CrossRef] [Google Scholar]
  10. J.J. Brey, M.J. Ruiz-Montero. Average energy and fluctuations of a granular gas at the threshold of the clustering instability. Granular Matter, 10 (2007), No. 1, 53–59. [CrossRef] [Google Scholar]
  11. G. Costantini, A. Puglisi. Fluctuating hydrodynamics for dilute granular gases: a Monte Carlo study. Phys. Rev. E, 82 (2010), No. 1, 011305. [CrossRef] [Google Scholar]
  12. G. Costantini, A. Puglisi, U. Marini Bettolo Marconi. Granular Brownian ratchet model. Phys. Rev. E, 75 (2007), No. 6, 061124–. [CrossRef] [Google Scholar]
  13. G. Costantini, A. Puglisi, U. Marini Bettolo Marconi. Velocity fluctuations in a one dimensional inelastic Maxwell model. J. Stat. Mech., (2008), P08031. [Google Scholar]
  14. J. W. Dufty, J. J. Brey. Green-Kubo expressions for a granular gas. J. Stat. Phys., 109 (2002), No. 3-4, 433–448. [CrossRef] [Google Scholar]
  15. J. Eggers. Sand as Maxwell’s demon. Phys. Rev. Lett., 83 (1999), No. 25, 5322–5325. [CrossRef] [Google Scholar]
  16. K. Feitosa, N. Menon. Breakdown of energy equipartition in a 2d binary vibrated granular gas. Phys. Rev. Lett., 88 (2002), No. 19, 198301. [CrossRef] [PubMed] [Google Scholar]
  17. A. L. Garcia, M. Malek Mansour, G. C. Lie, M. Mareschal, E. Clementi. Hydrodynamic fluctuations in a dilute gas under shear. Phys. Rev. A, 36 (1987), No. 9, 4348–4355. [CrossRef] [PubMed] [Google Scholar]
  18. I. Goldhirsch. Scales and kinetics of granular flows. Chaos, 9 (1999), No. 3, 659–672. [CrossRef] [PubMed] [Google Scholar]
  19. I. Goldhirsch, G. Zanetti. Clustering instability in dissipative gases. Phys. Rev. Lett., 70 (1993), No. 11, 1619–1622. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  20. R. Kubo, M. Toda, N. Hashitsume. Statistical physics II: Nonequilibrium stastical mechanics. Springer, Berlin, 1991. [Google Scholar]
  21. L. D. Landau, E. M. Lifchitz. Physique Statistique. Éditions MIR, Moscow, 1967. [Google Scholar]
  22. J. F. Lutsko. Molecular chaos, pair correlations, and shear-induced ordering of hard spheres. Phys. Rev. Lett., 77 (1996), No. 11, 2225–2228. [CrossRef] [PubMed] [Google Scholar]
  23. J. F. Lutsko. A model for the atomic-scale structure of the homogeneous cooling state of granular fluids. Phys. Rev. E, 63 (2001), No. 6, 061211. [CrossRef] [Google Scholar]
  24. M. Mansour Malek, A. L. Garcia, G. C. Lie, E. Clementi. Fluctuating hydrodynamics in a dilute gas. Phys. Rev. Lett., 58 (1987), No. 9, 874–877. [CrossRef] [PubMed] [Google Scholar]
  25. U. Marini Bettolo Marconi, A. Puglisi. Mean-field model of free-cooling inelastic mixtures. Phys. Rev. E, 65 (2002), No. 5, 051305. [CrossRef] [Google Scholar]
  26. U. Marini Bettolo Marconi, A. Puglisi, L. Rondoni, A. Vulpiani. Fluctuation-dissipation: Response theory in statistical physics. Phys. Rep., 461 (2008), No. 4-6, 111–195. [CrossRef] [Google Scholar]
  27. P. Maynar, M. I. G. de Soria, E. Trizac. Fluctuating hydrodynamics for driven granular gases. Eur. Phys. J. Special Topics, 170 (2009), No. 1, 123–139. [CrossRef] [EDP Sciences] [Google Scholar]
  28. R. Pagnani, U. Marini Bettolo Marconi, A. Puglisi. Driven low density granular mixtures. Phys. Rev. E, 66 (2002), No. 5, 051304. [CrossRef] [Google Scholar]
  29. T. Pöschel, N. Brilliantov, editors. Granular Gas Dynamics. Lecture Notes in Physics 624. Springer, Berlin, 2003. [Google Scholar]
  30. T. Pöschel, S. Luding, editors.Granular Gases. Lecture Notes in Physics 564. Springer, Berlin, 2001. [Google Scholar]
  31. A. Puglisi, A. Baldassarri, V. Loreto. Fluctuation-dissipation relations in driven granular gases. Physical Review E, 66 (2002), No. 6, 061305. [CrossRef] [Google Scholar]
  32. A. Puglisi, A. Baldassarri, A. Vulpiani. Violations of the Einstein relation in granular fluids: the role of correlations. J. Stat. Mech., (2007), P08016. [CrossRef] [Google Scholar]
  33. A. Sarracino, D. Villamaina, G. Costantini, A. Puglisi. Granular brownian motion. J. Stat. Mech., (2010) P04013. [Google Scholar]
  34. A. Sarracino, D. Villamaina, G. Gradenigo, A. Puglisi. Irreversible dynamics of a massive intruder in dense granular fluids. Europhys. Lett., 92 (2010), No. 3, 34001. [CrossRef] [Google Scholar]
  35. T. C. P. van Noije, M. H. Ernst, R. Brito, J. A. G. Orza. Mesoscopic theory of granular fluids. Phys. Rev. Lett., 79 (1007), No. 3, 411–414. [CrossRef] [Google Scholar]
  36. D. Villamaina, A. Puglisi, A. Vulpiani. The fluctuation-dissipation relation in sub-diffusive systems: the case of granular single-file diffusion. J. Stat. Mech., (2008), L10001. [Google Scholar]
  37. P. Visco, A. Puglisi, A. Barrat, F. van Wijland, E. Trizac. Energy fluctuations in vibrated and driven granular gases. Eur. Phys. J. B, 51 (2006), No. 3, 377–387. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.