Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 4, 2011
Granular hydrodynamics
Page(s) 191 - 218
Published online 18 July 2011
  1. N. Albers, F. Spahn. The influence of particle adhesion on the stability of agglomerates in Saturn’s rings. Icarus, 181 (2006), 292–301. [NASA ADS] [CrossRef]
  2. J. P. Andrews. Theory of Collision of Spheres of Soft Metals. Phil.Mag.S.7, 9 (1930), 58, 593–610.
  3. S. Araki, S. Tremaine. The dynamics of dense particle disks. Icarus, 65 (1986), 83–109. [NASA ADS] [CrossRef]
  4. J. M. Barbara, L. W. Esposito. Moonlet Collisions and the Effects of Tidally Modified Accretion in Saturn’s F Ring. Icarus, 160 (2002), 1, 161–171. [CrossRef]
  5. N. Borderies. Ring dynamics. Celestial Mechanics and Dynamical Astronomy, 46 (1989), 207–230. [CrossRef]
  6. N. Borderies, P. Goldreich, S. Tremaine. Sharp edges of planetary rings. Nature, 299 (1982), 209–211. [NASA ADS] [CrossRef]
  7. N. Borderies, P. Goldreich, S. Tremaine. Unsolved problems in planetary ring dynamics. In Planetary Rings (1984) pages 713–734.
  8. N. Borderies, P. Goldreich, S. Tremaine. A granular flow model for dense planetary rings. Icarus, 63 (1985), 406–420. [NASA ADS] [CrossRef]
  9. N. Borderies, P. Goldreich, S. Tremaine. Nonlinear density waves in planetary rings. Icarus, 68 (1986), 522–533. [CrossRef]
  10. N. Borderies, P. Goldreich, S. Tremaine. The formation of sharp edges in planetary rings by nearby satellites. Icarus, 80 (1989), 344–360. [CrossRef]
  11. J. J. Brey, J. W. Dufty, C. S. Kim, A. Santos. Hydrodynamics for granular flow at low density. Physical Review E, 58 (1998), 4638–4653. [CrossRef]
  12. F. G. Bridges, A. Hatzes, D. N. C. Lin. Structure, stability and evolution of Saturn’s rings. Nature, 309 (1984), 333–335. [NASA ADS] [CrossRef]
  13. N. Brilliantov, F. Spahn, J.-M. Hertzsch, T. Pöschel. Model for collisions in granular gases. Physical Review E, 53 (1996), 5382–5392. [NASA ADS] [CrossRef]
  14. N. V. Brilliantov, N. Albers, F. Spahn, T Pöschel, Collision dynamics of granular particles with adhesion. Phys. Rev. E, 76 (2008), 051302. [NASA ADS] [CrossRef]
  15. R. M. Canup, L. W. Esposito. Accretion in the Roche zone: Coexistence of rings and ring moons. Icarus, 113 (1995), 331–352.
  16. S. Charnoz, J. Salmon, A. Crida. The recent formation of Saturn’s moonlets from viscous spreading of the main rings. Nature, 465 (2010), 752–754. [NASA ADS] [CrossRef] [PubMed]
  17. J. E. Colwell, J. H. Cooney, L. W. Esposito, M. Sremčević. Density waves in Cassini UVIS stellar occultations. 1. The Cassini Division. Icarus, 200 (2009), 574–580. [NASA ADS] [CrossRef]
  18. J. E. Colwell, L. W. Esposito, M. Sremčević. Self-gravity wakes in Saturn’s A ring measured by stellar occultations from Cassini. Geophysical Research Letters, 33 (2006), 7201. [NASA ADS] [CrossRef]
  19. J. E. Colwell, L. W. Esposito, M. Sremčević, G. R. Stewart, W. E. McClintock. Self-gravity wakes and radial structure of Saturn’s B ring. Icarus, 190 (2007), 127–144. [NASA ADS] [CrossRef]
  20. J. N. Cuzzi, J. J. Lissauer, L. W. Esposito, J. B. Holberg, E. A. Marouf, G. L. Tyler, A. Boischot. Saturn’s Rings: Properties and Processes. In Planetary rings (R. Greenberg, A. Brahic, editors), pages 73–199, The University of Arizona Press 1984.
  21. J. N. Cuzzi, J. D. Scargle. Wavy edges suggest moonlet in Encke’s gap. Astrophysical Journal, 292 (1985), 276–290. [CrossRef]
  22. H. Daisaka, H. Tanaka, S. Ida. Viscosity in a Dense Planetary Ring with Self-Gravitating Particles. Icarus, 154 (2001), 296–312. [NASA ADS] [CrossRef]
  23. D. R. Davis, S. J. Weidenschilling, C. R. Chapman, R. Greenberg. Saturn ring particles as dynamic ephemeral bodies. Science, 224 (1984), 744–747. [CrossRef] [PubMed]
  24. S. F. Dermott, C. D. Murray. The dynamics of tadpole and horseshoe orbits. I - Theory. II - The coorbital satellites of Saturn. Icarus, 48 (1981), 1–22. [NASA ADS] [CrossRef]
  25. S. F. Dermott, C. D. Murray, A. T. Sinclair. The narrow rings of Jupiter, Saturn and Uranus. Nature, 284 (1980), 309–313. [NASA ADS] [CrossRef]
  26. L. W. Esposito, M. Ocallaghan, R. A. West. The structure of Saturn’s rings - Implications from the Voyager stellar occultation. Icarus, 56 (1983), 439–452. [NASA ADS] [CrossRef]
  27. R. G. French, P. D. Nicholson. Saturn’s Rings II. Particle sizes inferred from stellar occultation data. Icarus, 145 (2000), 502–523. [NASA ADS] [CrossRef]
  28. P. Goldreich, S. Tremaine. The excitation and evolution of density waves. Astrophysical Journal, 222 (1978), 850–858. [NASA ADS] [CrossRef]
  29. P. Goldreich, S. D. Tremaine. The velocity dispersion in Saturn’s rings. Icarus, 34 (1978), 227–239. [NASA ADS] [CrossRef]
  30. A. Hatzes, F. G. Bridges, D. N. C. Lin. Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astr. Soc., 231 (1988), 1091–1115.
  31. M. M. Hedman, P. D. Nicholson, H. Salo, B. D. Wallis, B. J. Buratti, K. H. Baines, R. H. Brown, R. N. Clark. Self-Gravity Wake Structures in Saturn’s A Ring Revealed by Cassini VIMS. Astronomical Journal, 133 (2007), 2624–2629. [NASA ADS] [CrossRef]
  32. D. Heißelmann, J. Blum, H. J. Fraser, K. Wolling. Microgravity experiments on the collisional behavior of saturnian ring particles. Icarus, 206 (2010), 424–430. [NASA ADS] [CrossRef]
  33. M. Henon. A simple model of Saturn’s rings. Nature, 293 (1981), 33–35. [CrossRef]
  34. J.-M. Hertzsch, H. Scholl, F. Spahn, I. Katzorke. Simulation of collisions in planetary rings. Astronomy and Astrophysics, 320 (1997), 319–324.
  35. J. Jenkins, M. Richman. Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Ration. Mech. Anal., 87 (1985), 355–377.
  36. H. N. Latter, G. I. Ogilvie. The linear stability of dilute particulate rings. Icarus, 184 (2006), 498–516. [CrossRef]
  37. H. N. Latter, G. I. Ogilvie. Dense planetary rings and the viscous overstability. Icarus, 195 (2008), 725–751. [CrossRef]
  38. H. N. Latter, G. I. Ogilvie. The viscous overstability, nonlinear wavetrains, and finescale structure in dense planetary rings. Icarus, 202 (2009), 565–583. [CrossRef]
  39. H. N. Latter, G. I. Ogilvie. Hydrodynamical simulations of viscous overstability in Saturn’s rings. Icarus, 210 (2010), 318–329. [CrossRef]
  40. M. C. Lewis, G. R. Stewart. Collisional Dynamics of Perturbed Planetary Rings. I. Astronomical Journal, 120 (2000), 3295–3310. [NASA ADS] [CrossRef]
  41. D. N. C. Lin, P. Bodenheimer. On the stability of Saturn’s rings. Astrophysical Journal, 248 (1981), L83–L86. [CrossRef]
  42. D. N. C. Lin, J. E. Pringle. A viscosity prescription for a self-gravitating accretion disc. Monthly Notices Royal Astron. Soc., 225 (1987), 607–613.
  43. J. J. Lissauer, F. H. Shu, J. N. Cuzzi. Moonlets in Saturn’s rings. Nature, 292 (1981), 707–711. [NASA ADS] [CrossRef]
  44. P.-Y. Longaretti. Saturn’s main ring particle size distribution - an analytic approach. Icarus, 81 (1989), 51–73. [CrossRef]
  45. D. Lynden-Bell, J. Pringle. The evolution of viscous discs and the origin of the nebular variables. Mon.Not.Roy.Astron.Soc, 168 (1974), 603–637.
  46. J.-M. Petit, M. Henon. A numerical simulation of planetary rings. III - Mass segregation, ring confinement, and gap formation. Astronomy and Astrophysics, 199 (1988), 343–356.
  47. C. C. Porco. S/2005 S 1. IAU Circ., 8524 (2005), 1.
  48. J. E. Pringle. Accretion discs in astrophysics. Ann. Rev. Astron. Astrophys., 19 (1981), 137–162. [NASA ADS] [CrossRef]
  49. J. Salmon, S. Charnoz, A. Crida, A. Brahic. Long-term and large-scale viscous evolution of dense planetary rings. Icarus, 209 (2010), 771–785. [CrossRef]
  50. H. Salo. Numerical simulations of dense collisional systems. Icarus, 90 (1991), 254–270. [NASA ADS] [CrossRef]
  51. H. Salo. Gravitational wakes in Saturn’s rings. Nature, 359 (1992), 619–621. [NASA ADS] [CrossRef]
  52. H. Salo. Simulations of dense planetary rings. III. Self-gravitating identical particles. Icarus, 117 (1995), 287–312. [NASA ADS] [CrossRef]
  53. H. Salo, J. Schmidt, F. Spahn. Viscous Overstability in Saturn’s B Ring. I. Direct Simulations and Measurement of Transport Coefficients. Icarus, 153 (2001), 295–315. [NASA ADS] [CrossRef]
  54. J. Schmidt, H. Salo. Weakly Nonlinear Model for Oscillatory Instability in Saturn’s Dense Rings. Physical Review Letters, 90 (2003), 6, 061102. [CrossRef] [PubMed]
  55. J. Schmidt, H. Salo, F. Spahn, O. Petzschmann. Viscous Overstability in Saturn’s B-Ring. II. Hydrodynamic Theory and Comparison to Simulations. Icarus, 153 (2001), 316–331. [NASA ADS] [CrossRef]
  56. U. Schmit, W. M. Tscharnuter. A fluid dynamical treatment of the common action of self-gravitation, collisions, and rotation in Saturn’s B-ring. Icarus, 115 (1995), 304–319. [NASA ADS] [CrossRef]
  57. M. Seiß. Moonlets in Saturn’s dense rings. PhD thesis (2009).
  58. M. Seiß, F. Spahn, M. Sremčević, H. Salo. Structures induced by small moonlets in Saturn’s rings: Implications for the Cassini Mission. Geophysical Research Letters, 32 (2005), 11205. [NASA ADS] [CrossRef]
  59. M. R. Showalter. Visual detection of 1981S13, Saturn’s eighteenth satellite, and its role in the Encke gap. Nature, 351 (1991), 709–713. [NASA ADS] [CrossRef]
  60. M. R. Showalter, J. N. Cuzzi, E. A. Marouf, L. W. Esposito. Satellite ’wakes’ and the orbit of the Encke Gap moonlet. Icarus, 66 (1986), 297–323. [CrossRef]
  61. F. H. Shu, L. Dones, J. J. Lissauer, C. Yuan, J. N. Cuzzi. Nonlinear spiral density waves - Viscous damping. Astrophysical Journal, 299 (1985), 542–573. [NASA ADS] [CrossRef]
  62. I. G. Shukhman. Collisional Dynamics of Particles in Saturn’s Rings. Sov. Astron., 28 (1984), 574.
  63. F. Spahn. Scattering properties of a moonlet (satellite) embedded in a particle ring - Application to the rings of Saturn. Icarus, 71 (1987), 69–77. [CrossRef]
  64. F. Spahn, N. Albers, M. Sremcevic, C. Thornton. Kinetic description of coagulation and fragmentation in dilute granular particle ensembles. Europhysics Letters, 67 (2004), 545–551. [CrossRef]
  65. F. Spahn, J. Schmidt, O. Petzschmann, H. Salo. Note: Stability analysis of a Keplerian disk of granular grains: Influence of thermal diffusion. Icarus, 145 (2000), 657–660. [NASA ADS] [CrossRef]
  66. F. Spahn, H. Scholl, J. Hertzsch. Structures in planetary rings caused by embedded moonlets. Icarus, 111 (1994), 514–535. [CrossRef]
  67. F. Spahn, H. Sponholz. Existence of moonlets in Saturn’s rings inferred from the optical depth profile. Nature, 339 (1989), 607–608. [CrossRef]
  68. F. Spahn, M. Sremčević. Density patterns induced by small moonlets in Saturn’s rings? Astronomy and Astrophysics, 358 (2000), 368–372.
  69. F. Spahn, H.-J. Wiebicke. Long-term gravitational influence of moonlets in planetary rings. Icarus, 77 (1989), 124–134. [CrossRef]
  70. M. Sremcevic, G. R. Stewart, N. Albers, J. E. Colwell, L. W. Esposito. Density Waves in Saturn’s Rings: Non-linear Dispersion and Moon Libration Effects. Bulletin of the American Astronomical Society, 40 (2008), 430.
  71. M. Sremčević, J. Schmidt, H. Salo, M. Seiß, F. Spahn, N. Albers. A belt of moonlets in Saturn’s A ring. Nature, 449 (2007), 1019–1021. [NASA ADS] [CrossRef] [PubMed]
  72. M. Sremčević, F. Spahn, W. J. Duschl. Density structures in perturbed thin cold discs. Monthly Notices Royal Astron. Soc., 337 (2002), 1139–1152. [NASA ADS] [CrossRef]
  73. G. R. Stewart, D. N. C. Lin, P. Bodenheimer. Collision-induced transport processes in planetary rings. Planetary Rings (R. Greenberg & A. Brahic, editor) (1984), 447–512.
  74. F. S. Thomson, E. A. Marouf, G. L. Tyler, R. G. French, N. J. Rappoport. Periodic microstructure in Saturn’s rings A and B. Geophysical Research Letters, 34 (2007), 24203. [NASA ADS] [CrossRef]
  75. M. S. Tiscareno, J. A. Burns, M. M. Hedman, C. C. Porco, The Population of Propellers in Saturn’s A Ring. Astronomical Journal, 135 (2008), 1083–1091. [NASA ADS] [CrossRef]
  76. M. S. Tiscareno, J. A. Burns, M. M. Hedman, C. C. Porco, J. W. Weiss, L. Dones, D. C. Richardson, C. D. Murray, 100-metre-diameter moonlets in Saturn’s A ring from observations of ’propeller’ structures. Nature, 440 (2006), 648–650. [NASA ADS] [CrossRef] [PubMed]
  77. M. S. Tiscareno, J. A. Burns, P. D. Nicholson, M. M. Hedman, C. C. Porco. Cassini imaging of Saturn’s rings. II. A wavelet technique for analysis of density waves and other radial structure in the rings. Icarus, 189 (2007), 14–34. [NASA ADS] [CrossRef]
  78. M. S. Tiscareno, J. A. Burns, M. Sremčević, K. Beurle, M. M. Hedman, N. J. Cooper, A. J. Milano, M. W. Evans, C. C. Porco, J. N. Spitale, J. W. Weiss. Physical Characteristics and Non-Keplerian Orbital Motion of ”Propeller” Moons Embedded in Saturn’s Rings. Astrophysical Journal Letters, 718 (2010), L92–L96. [NASA ADS] [CrossRef]
  79. W. R. Ward. On the radial structure of Saturn’s rings. Geophysical Research Letters, 8 (1981), 641–643. [NASA ADS] [CrossRef]
  80. S. J. Weidenschilling, C. R. Chapman, D. R. Davis, R. Greenberg. Ring particles - Collisional interactions and physical nature. Planetary Rings (1984) pages 367–415.
  81. J. Wisdom, S. Tremaine. Local simulations of planetary rings. Astronomical Journal, 95 (1988), 925–940. [NASA ADS] [CrossRef]
  82. H. A. Zebker, E. A. Marouf, G. L. Tyler. Saturn’s rings - Particle size distributions for thin layer model. Icarus, 64 (1985), 531–548. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.