Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 4, 2011
Granular hydrodynamics
Page(s) 191 - 218
DOI https://doi.org/10.1051/mmnp/20116409
Published online 18 July 2011
  1. N. Albers, F. Spahn. The influence of particle adhesion on the stability of agglomerates in Saturn’s rings. Icarus, 181 (2006), 292–301. [NASA ADS] [CrossRef] [Google Scholar]
  2. J. P. Andrews. Theory of Collision of Spheres of Soft Metals. Phil.Mag.S.7, 9 (1930), 58, 593–610. [Google Scholar]
  3. S. Araki, S. Tremaine. The dynamics of dense particle disks. Icarus, 65 (1986), 83–109. [NASA ADS] [CrossRef] [Google Scholar]
  4. J. M. Barbara, L. W. Esposito. Moonlet Collisions and the Effects of Tidally Modified Accretion in Saturn’s F Ring. Icarus, 160 (2002), 1, 161–171. [CrossRef] [Google Scholar]
  5. N. Borderies. Ring dynamics. Celestial Mechanics and Dynamical Astronomy, 46 (1989), 207–230. [CrossRef] [Google Scholar]
  6. N. Borderies, P. Goldreich, S. Tremaine. Sharp edges of planetary rings. Nature, 299 (1982), 209–211. [NASA ADS] [CrossRef] [Google Scholar]
  7. N. Borderies, P. Goldreich, S. Tremaine. Unsolved problems in planetary ring dynamics. In Planetary Rings (1984) pages 713–734. [Google Scholar]
  8. N. Borderies, P. Goldreich, S. Tremaine. A granular flow model for dense planetary rings. Icarus, 63 (1985), 406–420. [NASA ADS] [CrossRef] [Google Scholar]
  9. N. Borderies, P. Goldreich, S. Tremaine. Nonlinear density waves in planetary rings. Icarus, 68 (1986), 522–533. [NASA ADS] [CrossRef] [Google Scholar]
  10. N. Borderies, P. Goldreich, S. Tremaine. The formation of sharp edges in planetary rings by nearby satellites. Icarus, 80 (1989), 344–360. [CrossRef] [Google Scholar]
  11. J. J. Brey, J. W. Dufty, C. S. Kim, A. Santos. Hydrodynamics for granular flow at low density. Physical Review E, 58 (1998), 4638–4653. [Google Scholar]
  12. F. G. Bridges, A. Hatzes, D. N. C. Lin. Structure, stability and evolution of Saturn’s rings. Nature, 309 (1984), 333–335. [NASA ADS] [CrossRef] [Google Scholar]
  13. N. Brilliantov, F. Spahn, J.-M. Hertzsch, T. Pöschel. Model for collisions in granular gases. Physical Review E, 53 (1996), 5382–5392. [CrossRef] [PubMed] [Google Scholar]
  14. N. V. Brilliantov, N. Albers, F. Spahn, T Pöschel, Collision dynamics of granular particles with adhesion. Phys. Rev. E, 76 (2008), 051302. [Google Scholar]
  15. R. M. Canup, L. W. Esposito. Accretion in the Roche zone: Coexistence of rings and ring moons. Icarus, 113 (1995), 331–352. [Google Scholar]
  16. S. Charnoz, J. Salmon, A. Crida. The recent formation of Saturn’s moonlets from viscous spreading of the main rings. Nature, 465 (2010), 752–754. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  17. J. E. Colwell, J. H. Cooney, L. W. Esposito, M. Sremčević. Density waves in Cassini UVIS stellar occultations. 1. The Cassini Division. Icarus, 200 (2009), 574–580. [NASA ADS] [CrossRef] [Google Scholar]
  18. J. E. Colwell, L. W. Esposito, M. Sremčević. Self-gravity wakes in Saturn’s A ring measured by stellar occultations from Cassini. Geophysical Research Letters, 33 (2006), 7201. [Google Scholar]
  19. J. E. Colwell, L. W. Esposito, M. Sremčević, G. R. Stewart, W. E. McClintock. Self-gravity wakes and radial structure of Saturn’s B ring. Icarus, 190 (2007), 127–144. [NASA ADS] [CrossRef] [Google Scholar]
  20. J. N. Cuzzi, J. J. Lissauer, L. W. Esposito, J. B. Holberg, E. A. Marouf, G. L. Tyler, A. Boischot. Saturn’s Rings: Properties and Processes. In Planetary rings (R. Greenberg, A. Brahic, editors), pages 73–199, The University of Arizona Press 1984. [Google Scholar]
  21. J. N. Cuzzi, J. D. Scargle. Wavy edges suggest moonlet in Encke’s gap. Astrophysical Journal, 292 (1985), 276–290. [CrossRef] [Google Scholar]
  22. H. Daisaka, H. Tanaka, S. Ida. Viscosity in a Dense Planetary Ring with Self-Gravitating Particles. Icarus, 154 (2001), 296–312. [Google Scholar]
  23. D. R. Davis, S. J. Weidenschilling, C. R. Chapman, R. Greenberg. Saturn ring particles as dynamic ephemeral bodies. Science, 224 (1984), 744–747. [CrossRef] [PubMed] [Google Scholar]
  24. S. F. Dermott, C. D. Murray. The dynamics of tadpole and horseshoe orbits. I - Theory. II - The coorbital satellites of Saturn. Icarus, 48 (1981), 1–22. [NASA ADS] [CrossRef] [Google Scholar]
  25. S. F. Dermott, C. D. Murray, A. T. Sinclair. The narrow rings of Jupiter, Saturn and Uranus. Nature, 284 (1980), 309–313. [NASA ADS] [CrossRef] [Google Scholar]
  26. L. W. Esposito, M. Ocallaghan, R. A. West. The structure of Saturn’s rings - Implications from the Voyager stellar occultation. Icarus, 56 (1983), 439–452. [NASA ADS] [CrossRef] [Google Scholar]
  27. R. G. French, P. D. Nicholson. Saturn’s Rings II. Particle sizes inferred from stellar occultation data. Icarus, 145 (2000), 502–523. [NASA ADS] [CrossRef] [Google Scholar]
  28. P. Goldreich, S. Tremaine. The excitation and evolution of density waves. Astrophysical Journal, 222 (1978), 850–858. [Google Scholar]
  29. P. Goldreich, S. D. Tremaine. The velocity dispersion in Saturn’s rings. Icarus, 34 (1978), 227–239. [NASA ADS] [CrossRef] [Google Scholar]
  30. A. Hatzes, F. G. Bridges, D. N. C. Lin. Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astr. Soc., 231 (1988), 1091–1115. [Google Scholar]
  31. M. M. Hedman, P. D. Nicholson, H. Salo, B. D. Wallis, B. J. Buratti, K. H. Baines, R. H. Brown, R. N. Clark. Self-Gravity Wake Structures in Saturn’s A Ring Revealed by Cassini VIMS. Astronomical Journal, 133 (2007), 2624–2629. [Google Scholar]
  32. D. Heißelmann, J. Blum, H. J. Fraser, K. Wolling. Microgravity experiments on the collisional behavior of saturnian ring particles. Icarus, 206 (2010), 424–430. [NASA ADS] [CrossRef] [Google Scholar]
  33. M. Henon. A simple model of Saturn’s rings. Nature, 293 (1981), 33–35. [CrossRef] [Google Scholar]
  34. J.-M. Hertzsch, H. Scholl, F. Spahn, I. Katzorke. Simulation of collisions in planetary rings. Astronomy and Astrophysics, 320 (1997), 319–324. [Google Scholar]
  35. J. Jenkins, M. Richman. Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Ration. Mech. Anal., 87 (1985), 355–377. [Google Scholar]
  36. H. N. Latter, G. I. Ogilvie. The linear stability of dilute particulate rings. Icarus, 184 (2006), 498–516. [NASA ADS] [CrossRef] [Google Scholar]
  37. H. N. Latter, G. I. Ogilvie. Dense planetary rings and the viscous overstability. Icarus, 195 (2008), 725–751. [NASA ADS] [CrossRef] [Google Scholar]
  38. H. N. Latter, G. I. Ogilvie. The viscous overstability, nonlinear wavetrains, and finescale structure in dense planetary rings. Icarus, 202 (2009), 565–583. [NASA ADS] [CrossRef] [Google Scholar]
  39. H. N. Latter, G. I. Ogilvie. Hydrodynamical simulations of viscous overstability in Saturn’s rings. Icarus, 210 (2010), 318–329. [NASA ADS] [CrossRef] [Google Scholar]
  40. M. C. Lewis, G. R. Stewart. Collisional Dynamics of Perturbed Planetary Rings. I. Astronomical Journal, 120 (2000), 3295–3310. [Google Scholar]
  41. D. N. C. Lin, P. Bodenheimer. On the stability of Saturn’s rings. Astrophysical Journal, 248 (1981), L83–L86. [Google Scholar]
  42. D. N. C. Lin, J. E. Pringle. A viscosity prescription for a self-gravitating accretion disc. Monthly Notices Royal Astron. Soc., 225 (1987), 607–613. [Google Scholar]
  43. J. J. Lissauer, F. H. Shu, J. N. Cuzzi. Moonlets in Saturn’s rings. Nature, 292 (1981), 707–711. [NASA ADS] [CrossRef] [Google Scholar]
  44. P.-Y. Longaretti. Saturn’s main ring particle size distribution - an analytic approach. Icarus, 81 (1989), 51–73. [CrossRef] [Google Scholar]
  45. D. Lynden-Bell, J. Pringle. The evolution of viscous discs and the origin of the nebular variables. Mon.Not.Roy.Astron.Soc, 168 (1974), 603–637. [Google Scholar]
  46. J.-M. Petit, M. Henon. A numerical simulation of planetary rings. III - Mass segregation, ring confinement, and gap formation. Astronomy and Astrophysics, 199 (1988), 343–356. [Google Scholar]
  47. C. C. Porco. S/2005 S 1. IAU Circ., 8524 (2005), 1. [Google Scholar]
  48. J. E. Pringle. Accretion discs in astrophysics. Ann. Rev. Astron. Astrophys., 19 (1981), 137–162. [Google Scholar]
  49. J. Salmon, S. Charnoz, A. Crida, A. Brahic. Long-term and large-scale viscous evolution of dense planetary rings. Icarus, 209 (2010), 771–785. [CrossRef] [Google Scholar]
  50. H. Salo. Numerical simulations of dense collisional systems. Icarus, 90 (1991), 254–270. [NASA ADS] [CrossRef] [Google Scholar]
  51. H. Salo. Gravitational wakes in Saturn’s rings. Nature, 359 (1992), 619–621. [NASA ADS] [CrossRef] [Google Scholar]
  52. H. Salo. Simulations of dense planetary rings. III. Self-gravitating identical particles. Icarus, 117 (1995), 287–312. [Google Scholar]
  53. H. Salo, J. Schmidt, F. Spahn. Viscous Overstability in Saturn’s B Ring. I. Direct Simulations and Measurement of Transport Coefficients. Icarus, 153 (2001), 295–315. [NASA ADS] [CrossRef] [Google Scholar]
  54. J. Schmidt, H. Salo. Weakly Nonlinear Model for Oscillatory Instability in Saturn’s Dense Rings. Physical Review Letters, 90 (2003), 6, 061102. [Google Scholar]
  55. J. Schmidt, H. Salo, F. Spahn, O. Petzschmann. Viscous Overstability in Saturn’s B-Ring. II. Hydrodynamic Theory and Comparison to Simulations. Icarus, 153 (2001), 316–331. [NASA ADS] [CrossRef] [Google Scholar]
  56. U. Schmit, W. M. Tscharnuter. A fluid dynamical treatment of the common action of self-gravitation, collisions, and rotation in Saturn’s B-ring. Icarus, 115 (1995), 304–319. [NASA ADS] [CrossRef] [Google Scholar]
  57. M. Seiß. Moonlets in Saturn’s dense rings. PhD thesis (2009). [Google Scholar]
  58. M. Seiß, F. Spahn, M. Sremčević, H. Salo. Structures induced by small moonlets in Saturn’s rings: Implications for the Cassini Mission. Geophysical Research Letters, 32 (2005), 11205. [NASA ADS] [CrossRef] [Google Scholar]
  59. M. R. Showalter. Visual detection of 1981S13, Saturn’s eighteenth satellite, and its role in the Encke gap. Nature, 351 (1991), 709–713. [NASA ADS] [CrossRef] [Google Scholar]
  60. M. R. Showalter, J. N. Cuzzi, E. A. Marouf, L. W. Esposito. Satellite ’wakes’ and the orbit of the Encke Gap moonlet. Icarus, 66 (1986), 297–323. [CrossRef] [Google Scholar]
  61. F. H. Shu, L. Dones, J. J. Lissauer, C. Yuan, J. N. Cuzzi. Nonlinear spiral density waves - Viscous damping. Astrophysical Journal, 299 (1985), 542–573. [Google Scholar]
  62. I. G. Shukhman. Collisional Dynamics of Particles in Saturn’s Rings. Sov. Astron., 28 (1984), 574. [Google Scholar]
  63. F. Spahn. Scattering properties of a moonlet (satellite) embedded in a particle ring - Application to the rings of Saturn. Icarus, 71 (1987), 69–77. [CrossRef] [Google Scholar]
  64. F. Spahn, N. Albers, M. Sremcevic, C. Thornton. Kinetic description of coagulation and fragmentation in dilute granular particle ensembles. Europhysics Letters, 67 (2004), 545–551. [CrossRef] [Google Scholar]
  65. F. Spahn, J. Schmidt, O. Petzschmann, H. Salo. Note: Stability analysis of a Keplerian disk of granular grains: Influence of thermal diffusion. Icarus, 145 (2000), 657–660. [NASA ADS] [CrossRef] [Google Scholar]
  66. F. Spahn, H. Scholl, J. Hertzsch. Structures in planetary rings caused by embedded moonlets. Icarus, 111 (1994), 514–535. [CrossRef] [Google Scholar]
  67. F. Spahn, H. Sponholz. Existence of moonlets in Saturn’s rings inferred from the optical depth profile. Nature, 339 (1989), 607–608. [CrossRef] [Google Scholar]
  68. F. Spahn, M. Sremčević. Density patterns induced by small moonlets in Saturn’s rings? Astronomy and Astrophysics, 358 (2000), 368–372. [Google Scholar]
  69. F. Spahn, H.-J. Wiebicke. Long-term gravitational influence of moonlets in planetary rings. Icarus, 77 (1989), 124–134. [CrossRef] [Google Scholar]
  70. M. Sremcevic, G. R. Stewart, N. Albers, J. E. Colwell, L. W. Esposito. Density Waves in Saturn’s Rings: Non-linear Dispersion and Moon Libration Effects. Bulletin of the American Astronomical Society, 40 (2008), 430. [Google Scholar]
  71. M. Sremčević, J. Schmidt, H. Salo, M. Seiß, F. Spahn, N. Albers. A belt of moonlets in Saturn’s A ring. Nature, 449 (2007), 1019–1021. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  72. M. Sremčević, F. Spahn, W. J. Duschl. Density structures in perturbed thin cold discs. Monthly Notices Royal Astron. Soc., 337 (2002), 1139–1152. [NASA ADS] [CrossRef] [Google Scholar]
  73. G. R. Stewart, D. N. C. Lin, P. Bodenheimer. Collision-induced transport processes in planetary rings. Planetary Rings (R. Greenberg & A. Brahic, editor) (1984), 447–512. [Google Scholar]
  74. F. S. Thomson, E. A. Marouf, G. L. Tyler, R. G. French, N. J. Rappoport. Periodic microstructure in Saturn’s rings A and B. Geophysical Research Letters, 34 (2007), 24203. [Google Scholar]
  75. M. S. Tiscareno, J. A. Burns, M. M. Hedman, C. C. Porco, The Population of Propellers in Saturn’s A Ring. Astronomical Journal, 135 (2008), 1083–1091. [NASA ADS] [CrossRef] [Google Scholar]
  76. M. S. Tiscareno, J. A. Burns, M. M. Hedman, C. C. Porco, J. W. Weiss, L. Dones, D. C. Richardson, C. D. Murray, 100-metre-diameter moonlets in Saturn’s A ring from observations of ’propeller’ structures. Nature, 440 (2006), 648–650. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  77. M. S. Tiscareno, J. A. Burns, P. D. Nicholson, M. M. Hedman, C. C. Porco. Cassini imaging of Saturn’s rings. II. A wavelet technique for analysis of density waves and other radial structure in the rings. Icarus, 189 (2007), 14–34. [NASA ADS] [CrossRef] [Google Scholar]
  78. M. S. Tiscareno, J. A. Burns, M. Sremčević, K. Beurle, M. M. Hedman, N. J. Cooper, A. J. Milano, M. W. Evans, C. C. Porco, J. N. Spitale, J. W. Weiss. Physical Characteristics and Non-Keplerian Orbital Motion of ”Propeller” Moons Embedded in Saturn’s Rings. Astrophysical Journal Letters, 718 (2010), L92–L96. [NASA ADS] [CrossRef] [Google Scholar]
  79. W. R. Ward. On the radial structure of Saturn’s rings. Geophysical Research Letters, 8 (1981), 641–643. [Google Scholar]
  80. S. J. Weidenschilling, C. R. Chapman, D. R. Davis, R. Greenberg. Ring particles - Collisional interactions and physical nature. Planetary Rings (1984) pages 367–415. [Google Scholar]
  81. J. Wisdom, S. Tremaine. Local simulations of planetary rings. Astronomical Journal, 95 (1988), 925–940. [Google Scholar]
  82. H. A. Zebker, E. A. Marouf, G. L. Tyler. Saturn’s rings - Particle size distributions for thin layer model. Icarus, 64 (1985), 531–548. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.