Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 4, 2011
Granular hydrodynamics
Page(s) 77 - 86
DOI https://doi.org/10.1051/mmnp/20116404
Published online 18 July 2011
  1. P. K. Haff. Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech., 134 (1983), 401–430. [NASA ADS] [CrossRef] [Google Scholar]
  2. J. T. Jenkins, M. W. Richman. Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids, 28 (1985), 3485–94. [CrossRef] [Google Scholar]
  3. S. Chapman, T. G. Cowling. The Mathematical Theory of Non-Uniform Gases. Cambridge Univ. Press, Cambridge, 1990. [Google Scholar]
  4. N. V. Brilliantov, T. Pöschel. Kinetic Theory of Granular Gases. Oxford University Press, Oxford, 2004; Granular Gas Dynamics edited by T. Pöschel, N. Brilliantov. Springer, Berlin, 2003. [Google Scholar]
  5. I. Goldhirsch, G. Zanetti. Clustering instability in dissipative gases. Phys. Rev. Lett., 70 (1993), 1619–1622. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  6. E. Khain, B. Meerson. Symmetry–breaking instability in a prototypical driven granular gas. Phys. Rev. E, 66 (2002), 021306. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Khain, B. Meerson, P. V. Sasorov. Phase diagram of van der Waals–like phase separation in a driven granular gas. Phys. Rev. E, 70 (2004), 051310. [CrossRef] [Google Scholar]
  8. A. Baskaran, J. W. Dufty, J. J. Brey. Transport coefficients for the hard-sphere granular fluid. Phys. Rev. E, 77 (2008), 031311. [CrossRef] [MathSciNet] [Google Scholar]
  9. I. S. Aranson, L. S. Tsimring. Patterns and collective behavior in granular media: Theoretical concepts. Rev. Mod. Phys., 78 (2006), 641–692. [CrossRef] [Google Scholar]
  10. I. Goldhirsch. Rapid granular flows. Annu. Rev. Fluid Mech., 35 (2003), 267–293. [CrossRef] [Google Scholar]
  11. E. L. Grossman, T. Zhou, E. Ben-Naim. Towards granular hydrodynamics in two dimensions. Phys. Rev. E, 55 (1997), 4200–4206. [CrossRef] [Google Scholar]
  12. S. Luding. Global equation of state of two-dimensional hard sphere systems. Phys. Rev. E, 63 (2001), 042201. [CrossRef] [Google Scholar]
  13. B. Meerson, T. Pöschel, Y. Bromberg. Close-packed floating clusters: Granular hydrodynamics beyond the freezing point? Phys. Rev. Lett., 91 (2003), 024301. [CrossRef] [PubMed] [Google Scholar]
  14. P. Eshuis, K. van der Weele, D. van der Meer, D. Lohse. Granular Leidenfrost effect: Experiment and theory of floating particle clusters. Phys. Rev. Lett., 95 (2005), 258001. [CrossRef] [PubMed] [Google Scholar]
  15. L. Bocquet, W. Losert, D. Schalk, T. C. Lubensky, J. P. Gollub. Granular shear flow dynamics and forces: Experiment and continuum theory. Phys. Rev. E, 65 (2002), 011307. [CrossRef] [Google Scholar]
  16. L. Bocquet, J. Errami, T. C. Lubensky. Hydrodynamic model for a dynamical jammed-to-flowing transition in gravity driven granular media. Phys. Rev. Lett., 89 (2002), 184301. [CrossRef] [PubMed] [Google Scholar]
  17. R. Garcia-Rojo, S. Luding, J. J. Brey. Transport coefficients for dense hard-disk systems. Phys. Rev. E, 74 (2006), 061305. [CrossRef] [Google Scholar]
  18. E. Khain. Hydrodynamics of fluid-solid coexistence in dense shear granular flow. Phys. Rev. E, 75 (2007), 051310. [CrossRef] [Google Scholar]
  19. S. Luding. Towards dense, realistic granular media in 2D. Nonlinearity, 22 (2009), No. 12, R101–R146. [CrossRef] [Google Scholar]
  20. E. Khain, B. Meerson. Shear-induced crystallization of a dense rapid granular flow: Hydrodynamics beyond the melting point. Phys. Rev. E, 73 (2006), 061301. [CrossRef] [Google Scholar]
  21. M. Alam, P. Shukla, S. Luding. Universality of shear-banding instability and crystallization in sheared granular fluid. J. Fluid Mech., 615 (2008), 293. [CrossRef] [MathSciNet] [Google Scholar]
  22. E. Khain. Bistability and hysteresis in dense shear granular flow. Europhys. Lett., 87 (2009), 14001. [CrossRef] [Google Scholar]
  23. M. Alam, P. R. Nott. Stability of plane Couette flow of a granular material. J. Fluid Mech., 377 (1998), 99–136. [CrossRef] [MathSciNet] [Google Scholar]
  24. M. Alam, S. Luding. First normal stress difference and crystallization in a dense sheared granular fluid. Phys. Fluids, 15 (2003), 2298–2312. [CrossRef] [Google Scholar]
  25. C. H. Wang, R. Jackson, S. Sundaresan. Instabilities of fully developed rapid flow of a granular material in a channel. J. Fluid Mech., 342 (1997), 179–197. [CrossRef] [MathSciNet] [Google Scholar]
  26. C. H. Wang, Z. Q. Tong. On the density waves developed in gravity channel flows of granular materials. J. Fluid Mech., 435 (2001), 217–246. [Google Scholar]
  27. C. Denniston, H. Li. Dynamics and stress in gravity-driven granular flow. Phys. Rev. E, 59 (1999), 3289–3292. [CrossRef] [Google Scholar]
  28. J. J. Drozd, C. Denniston. Simulations of collision times in gravity-driven granular flow. Europhys. Lett., 76 (2006), 360. [CrossRef] [Google Scholar]
  29. J. C. Tsai, W. Losert, G. A. Voth, J. P. Gollub. Two-dimensional granular Poiseuille flow on an incline: Multiple dynamical regimes. Phys. Rev. E, 65 (2002), 011306. [CrossRef] [Google Scholar]
  30. K. C. Vijayakumar, M. Alam. Velocity distribution and the effect of wall roughness in granular Poiseuille flow. Phys. Rev. E, 75 (2007), 051306. [CrossRef] [Google Scholar]
  31. V. Chikkadi, M. Alam. Slip velocity and stresses in granular Poiseuille flow via event-driven simulation. Phys. Rev. E, 80 (2009), 021303. [CrossRef] [Google Scholar]
  32. E. D. Liss, S. L. Conway, B. J. Glasser. Density waves in gravity-driven granular flow through a channel. Phys. Fluids, 14 (2002), 3309–3326. [CrossRef] [MathSciNet] [Google Scholar]
  33. M. Alam, V. Chikkadi, V. K. Gupta. Density waves and the effect of wall roughness in granular Poiseuille flow: Simulation and linear stability. EPJ St, 179 (2009), 69–90. [Google Scholar]
  34. J. J. Brey, F. Moreno, J. W. Dufty. Model kinetic equation for low-density granular flow. Phys. Rev. E, 54 (1996), 445–456. [CrossRef] [Google Scholar]
  35. N. Sela, I. Goldhirsch Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J. Fluid Mech., 361 (1998) 41–74. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.