Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 4, 2011
Granular hydrodynamics
Page(s) 77 - 86
DOI https://doi.org/10.1051/mmnp/20116404
Published online 18 July 2011
  1. P. K. Haff. Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech., 134 (1983), 401–430. [NASA ADS] [CrossRef]
  2. J. T. Jenkins, M. W. Richman. Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids, 28 (1985), 3485–94. [CrossRef]
  3. S. Chapman, T. G. Cowling. The Mathematical Theory of Non-Uniform Gases. Cambridge Univ. Press, Cambridge, 1990.
  4. N. V. Brilliantov, T. Pöschel. Kinetic Theory of Granular Gases. Oxford University Press, Oxford, 2004; Granular Gas Dynamics edited by T. Pöschel, N. Brilliantov. Springer, Berlin, 2003.
  5. I. Goldhirsch, G. Zanetti. Clustering instability in dissipative gases. Phys. Rev. Lett., 70 (1993), 1619–1622. [NASA ADS] [CrossRef] [PubMed]
  6. E. Khain, B. Meerson. Symmetry–breaking instability in a prototypical driven granular gas. Phys. Rev. E, 66 (2002), 021306. [CrossRef] [MathSciNet]
  7. E. Khain, B. Meerson, P. V. Sasorov. Phase diagram of van der Waals–like phase separation in a driven granular gas. Phys. Rev. E, 70 (2004), 051310. [CrossRef]
  8. A. Baskaran, J. W. Dufty, J. J. Brey. Transport coefficients for the hard-sphere granular fluid. Phys. Rev. E, 77 (2008), 031311. [CrossRef] [MathSciNet]
  9. I. S. Aranson, L. S. Tsimring. Patterns and collective behavior in granular media: Theoretical concepts. Rev. Mod. Phys., 78 (2006), 641–692. [CrossRef]
  10. I. Goldhirsch. Rapid granular flows. Annu. Rev. Fluid Mech., 35 (2003), 267–293. [CrossRef]
  11. E. L. Grossman, T. Zhou, E. Ben-Naim. Towards granular hydrodynamics in two dimensions. Phys. Rev. E, 55 (1997), 4200–4206. [CrossRef]
  12. S. Luding. Global equation of state of two-dimensional hard sphere systems. Phys. Rev. E, 63 (2001), 042201. [CrossRef]
  13. B. Meerson, T. Pöschel, Y. Bromberg. Close-packed floating clusters: Granular hydrodynamics beyond the freezing point? Phys. Rev. Lett., 91 (2003), 024301. [CrossRef] [PubMed]
  14. P. Eshuis, K. van der Weele, D. van der Meer, D. Lohse. Granular Leidenfrost effect: Experiment and theory of floating particle clusters. Phys. Rev. Lett., 95 (2005), 258001. [CrossRef] [PubMed]
  15. L. Bocquet, W. Losert, D. Schalk, T. C. Lubensky, J. P. Gollub. Granular shear flow dynamics and forces: Experiment and continuum theory. Phys. Rev. E, 65 (2002), 011307. [CrossRef]
  16. L. Bocquet, J. Errami, T. C. Lubensky. Hydrodynamic model for a dynamical jammed-to-flowing transition in gravity driven granular media. Phys. Rev. Lett., 89 (2002), 184301. [CrossRef] [PubMed]
  17. R. Garcia-Rojo, S. Luding, J. J. Brey. Transport coefficients for dense hard-disk systems. Phys. Rev. E, 74 (2006), 061305. [CrossRef]
  18. E. Khain. Hydrodynamics of fluid-solid coexistence in dense shear granular flow. Phys. Rev. E, 75 (2007), 051310. [CrossRef]
  19. S. Luding. Towards dense, realistic granular media in 2D. Nonlinearity, 22 (2009), No. 12, R101–R146. [CrossRef]
  20. E. Khain, B. Meerson. Shear-induced crystallization of a dense rapid granular flow: Hydrodynamics beyond the melting point. Phys. Rev. E, 73 (2006), 061301. [CrossRef]
  21. M. Alam, P. Shukla, S. Luding. Universality of shear-banding instability and crystallization in sheared granular fluid. J. Fluid Mech., 615 (2008), 293. [CrossRef] [MathSciNet]
  22. E. Khain. Bistability and hysteresis in dense shear granular flow. Europhys. Lett., 87 (2009), 14001. [CrossRef]
  23. M. Alam, P. R. Nott. Stability of plane Couette flow of a granular material. J. Fluid Mech., 377 (1998), 99–136. [CrossRef] [MathSciNet]
  24. M. Alam, S. Luding. First normal stress difference and crystallization in a dense sheared granular fluid. Phys. Fluids, 15 (2003), 2298–2312. [CrossRef]
  25. C. H. Wang, R. Jackson, S. Sundaresan. Instabilities of fully developed rapid flow of a granular material in a channel. J. Fluid Mech., 342 (1997), 179–197. [CrossRef] [MathSciNet]
  26. C. H. Wang, Z. Q. Tong. On the density waves developed in gravity channel flows of granular materials. J. Fluid Mech., 435 (2001), 217–246.
  27. C. Denniston, H. Li. Dynamics and stress in gravity-driven granular flow. Phys. Rev. E, 59 (1999), 3289–3292. [CrossRef]
  28. J. J. Drozd, C. Denniston. Simulations of collision times in gravity-driven granular flow. Europhys. Lett., 76 (2006), 360. [CrossRef]
  29. J. C. Tsai, W. Losert, G. A. Voth, J. P. Gollub. Two-dimensional granular Poiseuille flow on an incline: Multiple dynamical regimes. Phys. Rev. E, 65 (2002), 011306. [CrossRef]
  30. K. C. Vijayakumar, M. Alam. Velocity distribution and the effect of wall roughness in granular Poiseuille flow. Phys. Rev. E, 75 (2007), 051306. [CrossRef]
  31. V. Chikkadi, M. Alam. Slip velocity and stresses in granular Poiseuille flow via event-driven simulation. Phys. Rev. E, 80 (2009), 021303. [CrossRef]
  32. E. D. Liss, S. L. Conway, B. J. Glasser. Density waves in gravity-driven granular flow through a channel. Phys. Fluids, 14 (2002), 3309–3326. [CrossRef] [MathSciNet]
  33. M. Alam, V. Chikkadi, V. K. Gupta. Density waves and the effect of wall roughness in granular Poiseuille flow: Simulation and linear stability. EPJ St, 179 (2009), 69–90.
  34. J. J. Brey, F. Moreno, J. W. Dufty. Model kinetic equation for low-density granular flow. Phys. Rev. E, 54 (1996), 445–456. [CrossRef]
  35. N. Sela, I. Goldhirsch Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J. Fluid Mech., 361 (1998) 41–74. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.