Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 4, 2011
Granular hydrodynamics
Page(s) 87 - 117
DOI https://doi.org/10.1051/mmnp/20116405
Published online 18 July 2011
  1. A. Baskaran, J. W. Dufty, J. J. Brey. Transport coefficients for the hard-sphere granular fluid. Phys. Rev. E, 77 (2008), No. 3, 031311. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Bixon, R. Zwanzig. Boltzmann-Langevin Equation and Hydrodynamic Fluctuations. Phys. Rev., 187 (1969), No. 1, 267–272. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. J. Brey, J. W. Dufty, M. J. Ruiz-Montero, in Granular Gas Dynamics, edited by T. Pöschel and N. Brilliantov. Springer, Berlin, 2003. [Google Scholar]
  4. J. J. Brey, M. I. García de Soria, P. Maynar. Breakdown of hydrodynamics in the inelastic Maxwell model of granular gases. Phys. Rev. E, 82 (2010), No. 2, 021303. [CrossRef] [Google Scholar]
  5. J. J. Brey, M. I. García de Soria, P. Maynar. Breakdown of the fluctuation-dissipation relations in granular gases. EPL, 84 (2008), No. 2, 24002. [CrossRef] [EDP Sciences] [Google Scholar]
  6. J. J. Brey, P. Maynar, M. I. García de Soria. Fluctuating hydrodynamics for dilute granular gases. Phys. Rev. E, 79 (2009), No. 5, 051305. [CrossRef] [Google Scholar]
  7. J. J. Brey, M. I. García de Soria, P. Maynar, M. J. Ruiz-Montero. Energy fluctuations in the homogeneous cooling state of granular gases. Phys. Rev. E, 70 (2004), No. 1, 011302. [CrossRef] [Google Scholar]
  8. J. J. Brey, M. J. Ruiz-Montero, F. Moreno. Boundary conditions and normal state for a vibrated granular fluid. Phys. Rev. E, 62 (2000), No. 4, 5339–5346. [CrossRef] [Google Scholar]
  9. R. Cafiero, S. Luding, H. J. Herrmann. Two-Dimensional Granular Gas of Inelastic Spheres with Multiplicative Driving. Phys. Rev. Lett., 84 (2000), No. 26, 6014–6017. [CrossRef] [PubMed] [Google Scholar]
  10. M. H. Ernst, E. Trizac, A. Barrat. The Boltzmann Equation for Driven Systems of Inelastic Soft Spheres. J. Stat. Phys., 124 (2006), No. 2–4, 549–586. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. H. Ernst, E. Trizac, A. Barrat. The rich behavior of the Boltzmann equation for dissipative gases. Europhys. Lett., 76 (2006), No. 1, 56–62. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Fiege, T. Aspelmeier, A. Zippelius. Long-Time Tails and Cage Effect in Driven Granular Fluids. Phys. Rev. Lett., 102 (2009), No. 9, 098001. [CrossRef] [PubMed] [Google Scholar]
  13. M. I. García de Soria, P. Maynar, G. Schehr, A. Barrat, E. Trizac. Dynamics of annihilation. II. Fluctuations of global quantities. Phys. Rev. E, 77 (2008), No. 5, 051128. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. I. García de Soria, P. Maynar, E. Trizac. Energy fluctuations in a randomly driven granular fluid. Mol. Phys., 107 (2009), No. 4–6, 383–392. [CrossRef] [Google Scholar]
  15. V. Garzó, J. M. Montanero. Transport coefficients of a heated granular gas. Physica A, 313 (2002), No. 3–4, 336–356. [Google Scholar]
  16. I. Goldhirsch, G. Zanetti. Clustering instability in dissipative gases. Phys. Rev. Lett., 70 (1993), No. 11, 1619–1622. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  17. A. Goldshtein, M. Shapiro. Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations. J. Fluid. Mech., 282 (1995), 75–114. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  18. P. K. Haff. Grain flow as a fluid-mechanical phenomenon. J. Fluid. Mech., 134 (1983), 401–430. [NASA ADS] [CrossRef] [Google Scholar]
  19. C. C. Maaß, N. Isert, G. Maret, C. M. Aegerter. Experimental Investigation of the Freely Cooling Granular Gas. Phys. Rev. Lett., 100 (2008), No. 24, 248001. [CrossRef] [PubMed] [Google Scholar]
  20. P. Maynar, M. I. García de Soria, E. Trizac. Fluctuating hydrodynamics for driven granular gases. EPJ ST, 179 (2009), 123–139. [Google Scholar]
  21. S. McNamara, W. R. Young. Dynamics of a freely evolving, two-dimensional granular medium. Phys. Rev. E, 53 (1996), No. 5, 5089–5100. [CrossRef] [Google Scholar]
  22. J. M. Montanero, A. Santos. Computer simulation of uniformly heated granular fluids. Granular Matter, 2 (2000), No. 2, 53–64. [CrossRef] [Google Scholar]
  23. S. J. Moon, M. D. Shattuck, J. B. Swift. Velocity distributions and correlations in homogeneously heated granular media. Phys. Rev E, 64 (2001), No. 3, 031303. [CrossRef] [Google Scholar]
  24. I. Pagonabarraga, E. Trizac, T. P. C. van Noije, M. H. Ernst. Randomly driven granular fluids: Collisional statistics and short scale structure. Phys. Rev. E, 65 (2001), No. 1, 011303. [CrossRef] [Google Scholar]
  25. B. Painter, M. Dutt, R. Behringer. Energy dissipation and clustering for a cooling granular material on a substrate. Physica D, 175 (2003), No. 1–2, 43–68. [CrossRef] [Google Scholar]
  26. A. Prevost, D. A. Egolf, J. S. Urbach. Forcing and Velocity Correlations in a Vibrated Granular Monolayer. Phys. Rev. Lett., 89 (2002), No. 8, 084301. [CrossRef] [PubMed] [Google Scholar]
  27. A. Puglisi, V. Loreto, U. M. B. Marconi, A. Vulpiani. Kinetic approach to granular gases. Phys. Rev E, 59 (1999), No. 5, 5582–5595. [CrossRef] [Google Scholar]
  28. P. Résibois, M. de Leener. Classical Kinetic Theory of Fluids. Wiley, New York, 1977. [Google Scholar]
  29. N. G. van Kampen. Stochastic Proccesses in Physics and Chemistry. North-Holland, Amsterdam, 1992. [Google Scholar]
  30. T. P. C. van Noije, M. H. Ernst. Velocity distributions in homogeneous granular fluids: the free and the heated case. Granular Matter, 1 (1998), No. 2, 57–64. [CrossRef] [Google Scholar]
  31. T. P. C. van Noije, M. H. Ernst, E. Trizac, I. Pagonabarraga. Randomly driven granular fluids: Large-scale structure. Phys. Rev. E, 59 (1999), No. 4, 4326–4341. [CrossRef] [Google Scholar]
  32. P. Visco, A. Puglisi, A. Barrat, F. van Wijland, E. Trizac. Energy fluctuations in vibrated and driven granular gases. Eur. Phys. J. B, 51 (2006), No. 3, 377–387. [CrossRef] [EDP Sciences] [Google Scholar]
  33. D. R. M. Williams, F. C. MacKintosh. Driven granular media in one dimension: Correlations and equation of state. Phys. Rev. E, 54 (1996), No. 1, R9–R12. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.