Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 4, 2011
Granular hydrodynamics
Page(s) 118 - 150
DOI https://doi.org/10.1051/mmnp/20116406
Published online 18 July 2011
  1. M. P. Allen, D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, Oxford, 1987. [Google Scholar]
  2. J. C. Almekinders, C. Jones. Multiple jet electrohydrodynamic spraying and applications. J. Aerosol Sci., 30 (1999), 969–971. [CrossRef] [Google Scholar]
  3. J. Barnes, P. Hut. A hierarchical O(NlogN) force calculation algorithm. Nature, 324 (1986), 446–449. [NASA ADS] [CrossRef] [Google Scholar]
  4. D. L. Blair, A. Kudrolli. Magnetized granular materials. In H. Hinrichsen and D. Wolf, editors, The Physics of Granular Media., pages 281–296, Weinheim, 2004. Wiley-VCH. [Google Scholar]
  5. J. Blum, S. Bruns, D. Rademacher, A. Voss, B. Willenberg, M. Krause. Measurement of the translational and rotational Brownian motion of individual particles in a rarefied gas. Phys. Rev. Lett., 97 (2006), 230601. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  6. J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H.U. Keller, W.J. Markiewicz, I. Mann, B.A.S. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S.J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip. Growth and form of planetary seedlings: Results from a microgravity aggregation experiment. Phys. Rev. Lett., 85 (2000), 2426–2429. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  7. P. Bode, J. P. Ostriker. Tree particle-mesh: An adaptive, efficient, and parallel code of collisionless cosmological simulation. Astrophys. J. Supplem. Series, 145 (2003), No. 1, 1–13. [NASA ADS] [CrossRef] [Google Scholar]
  8. A. Brahic. Systems of colliding bodies in a gravitational field: I - numerical simulation of the standard model. Astronomy and Astrophysics, 54 (1977), 895–907. [Google Scholar]
  9. F. G. Bridges, A. Hatzes, D. N. C. Lin. Structure, stability and evolution of Saturn’s rings. Nature, 309 (1984), 333–335. [NASA ADS] [CrossRef] [Google Scholar]
  10. N. V. Brilliantov, T. Pöschel. Deviation from maxwell distribution in granular gases with constant restitution coefficient. Phys. Rev. E, 61 (2000), 2809–2814. [CrossRef] [Google Scholar]
  11. N. V. Brilliantov, T. Pöschel. Kinetic Theory of Granular Gases. Oxford University Press, Oxford, 2004. [Google Scholar]
  12. N. V. Brilliantov, C. Saluena, T. Schwager, T. Pöschel. Transient structures in a granular gas. Phys. Rev. Let., 93 (2004), No. 13, 134301. [CrossRef] [PubMed] [Google Scholar]
  13. N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, T. Pöschel. A model for collisions in granular gases. Phys. Rev. E, 53 (1996), 5382–5392. [NASA ADS] [CrossRef] [Google Scholar]
  14. N. F. Carnahan, K. E. Starling. Equation of state for nonattractive rigid spheres. J. Chem. Phys., 51 (1969), No. 2, 635–636. [NASA ADS] [CrossRef] [Google Scholar]
  15. J. A. Cross. Electrostatics: Principles, Problems and Applications. Adam Hilger, Bristol, 1987. [Google Scholar]
  16. S. M. Dammer, J. Werth, H. Hinrichsen. Electrostatically charged granular matter. In H. Hinrichsen D. Wolf, editors, The Physics of Granular Media., pages 255–280, Wiley-VCH, Weinheim, 2004. [Google Scholar]
  17. S. M. Dammer, D. E. Wolf. Self-focusing dynamics in monopolarly charged suspensions. Phys. Rev. E, 93 (2004), No. 15, 150602. [Google Scholar]
  18. J. Du. Hydrostatic equilibrium and Tsallis’ equilibrium for self-gravitating systems. Central European Journal of Physics, 3 (2005), No. 3, 376–381. [CrossRef] [Google Scholar]
  19. J. Duran. Sands, Powders and Grains. Springer-Verlag, New York, 2000. [Google Scholar]
  20. J. W. Eastwood, R. W. Hockney, D. Lawrence. P3M3DP - the 3-dimensional periodic particle-particle-particle-mesh program. Comp. Phys. Commun., 19 (1980), 215–261. [CrossRef] [Google Scholar]
  21. M. H. Ernst. Nonlinear model-Boltzmann equations and exact solutions. Physics Reports, 78 (1981), No. 1, 1–171. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. H. Ernst, J. R. Dorfman, W. R. Hoegy, J. M. J. van Leeuwen. Hard-sphere dynamics and binary-collision operators. Physica, 45 (1969), No. 1, 127–146. [CrossRef] [Google Scholar]
  23. M. H. Ernst, E. Trizac, A. Barrat. The Boltzmann equation for driven systems of inelastic soft spheres. J. Stat. Phys., 124 (2006), No. 2–4, 549–586. [CrossRef] [MathSciNet] [Google Scholar]
  24. P. Eshuis, K. van der Weele, D. van der Meer, D. Lohse. The granular Leidenfrost effect: Experiment and theory of floating particle clusters. Phys. Rev. E, 95 (2005), 258001. [Google Scholar]
  25. S. E. Esipov, T. Pöschel.. The granular phase diagram. J. Stat. Phys., 86 (1997), No. 5/6, 1385–1395. [CrossRef] [Google Scholar]
  26. L. W. Esposito, J. N. Cuzzi, J. B. Holberg, E. A. Marouf, G. L. Tyler, C. C. Porco. Saturn’s rings, structure, dynamics and particle properties. In Saturn, pages 463–545, Tucson, AZ, Univ. of Arizona Press, 1984. [Google Scholar]
  27. P. P. Ewald. The calculation of optical and electrostatic grid potential. Ann. d. Physik, 64 (1921), 253–287. [CrossRef] [Google Scholar]
  28. K. B. Geerse. Application of Electrospray: from people to plants. Ph.D. thesis, Technische Universiteit Delft, 2003. [Google Scholar]
  29. I. Goldhirsch, G. Zanetti. Clustering instability in dissipative gases. Phys. Rev. Lett., 70 (1993), No. 11, 1619–1622. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  30. P. Goldreich. The dynamics of planetary rings. Ann. Rev. Astron. Astrophys., 20 (1982), 249–283. [NASA ADS] [CrossRef] [Google Scholar]
  31. R. Greenberg, A. Brahic. Planetary Rings. Arizona University Press, Tucson, AZ, 1984. [Google Scholar]
  32. L. Greengard, V. Rokhlin. A fast algorithm for particle simulations. J. of Comp. Phys., 73 (1987), 325–348. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  33. P. K. Haff. Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech., 134 (1983), 401–430. [NASA ADS] [CrossRef] [Google Scholar]
  34. J.-P. Hansen, I. R. McDonald. Theory of Simple Liquids. Academic Press Ltd., London, San Diego, 1990. [Google Scholar]
  35. D. Henderson. A simple equation of state for hard discs. Molec. Phys., 30 (1975), No. 3, 971–972. [CrossRef] [Google Scholar]
  36. O. Herbst, R. Cafiero, A. Zippelius, H. J. Herrmann, S. Luding. A driven two-dimensional granular gas with coulomb friction. Phys. of Fluids, 17 (2005), No. 10, 107102. [CrossRef] [MathSciNet] [Google Scholar]
  37. O. Herbst, P. Müller, A. Zippelius. Local heat flux and energy loss in a two-dimensional vibrated granular gas. Phys. Rev. E, 72 (2005) No. 4, 041303. [CrossRef] [Google Scholar]
  38. L. Hernquist. Hierarchical N-body methods. Comp. Phys. Commun., 48 (1988), 107–115. [CrossRef] [Google Scholar]
  39. R. Hoffmann. Modeling and Simulation of an Electrostatic Image Transfer. (Ph.D. thesis) Shaker Verlag, Aachen, 2004. [Google Scholar]
  40. J. S. Høye. Dynamical pair correlations of classical and quantum fluids perturbed with long-range forces. Physica A, 389 (2010), 1380–1390. [CrossRef] [Google Scholar]
  41. M. Huthmann, A. Zippelius. Dynamics of inelastically colliding rough spheres: Relaxation of translational and rotational energy. Phys. Rev. E, 56 (1997), No. 6, R6275–R6278. [CrossRef] [Google Scholar]
  42. W. Kleber,. A. Lang. Triboelectrically charged powder coatings generated by running through holes and slits. J. of Electrostatics, 40&41 (1997), 237–240. [CrossRef] [Google Scholar]
  43. M. Krause, J. Blum. Growth and form of planetary seedlings: Results from a sounding rocket microgravity aggregation experiment. Phys. Rev. Lett., 93 (2004), 021103. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  44. C. W. J. Lemmens. An Investigation, Implementation and Comparison of 3 important Particle Simulation Techniques: PP: Particle-Particle PM: Particle-Mesh TC: Tree-Code. Report 97-46, Faculty of Technical Mathematics and Informatics, Delft, 1997. [Google Scholar]
  45. M. Linsenbühler, J. H. Werth, S. M. Dammer, H. A. Knudsen, H. Hinrichsen, K.-E. Wirth, D. E. Wolf. Cluster size distribution of charged nanopowders in suspensions. Powder Technology, 167 (2006), No. 3, 124–133. [CrossRef] [Google Scholar]
  46. D. Lohse, R. Bergmann, R. Mikkelsen, C. Zeilstra, D. van der Meer, M. Versluis, K. van der Weele, M. van der Hoef, H. Kuipers. Impact on soft sand: Void collapse and jet formation. Phys. Rev. Let., 93 (2004), No. 19, 198003. [NASA ADS] [CrossRef] [Google Scholar]
  47. J. Lowell, A. C. Rose-Innes. Contact electrification. Adv. in Phys., 29 (1980), No. 6, 947–1023. [NASA ADS] [CrossRef] [Google Scholar]
  48. S. Luding. Clustering instabilities, arching, and anomalous interaction probabilities as examples for cooperative phenomena in dry granular media. T.A.S.K. Quarterly, Scientific Bulletin of Academic Computer Centre of the Technical University of Gdansk., 2 (1998), No. 3, 417–443. [Google Scholar]
  49. S. Luding. Collisions & contacts between two particles. In H. J. Herrmann, J.-P. Hovi, S. Luding, editors, Physics of dry granular media - NATO ASI Series E350, page 285, Dordrecht, 1998. Kluwer Academic Publishers. [Google Scholar]
  50. S. Luding. Structure and cluster formation in granular media. Pranama-J. Phys., 64 (2005), No. 6, 893–902. [CrossRef] [Google Scholar]
  51. S. Luding. Cohesive frictional powders: Contact models for tension. Granular Matter, 10 (2008), No. 4, 235–246. [CrossRef] [Google Scholar]
  52. S. Luding. Towards dense, realistic granular media in 2d. Nonlinearity, 22 (2009), R101–R146. [CrossRef] [Google Scholar]
  53. S. Luding, A. Goldshtein. Collisional cooling with multi-particle interactions. Granular Matter, 5 (2003), No. 3, 159–163. [CrossRef] [Google Scholar]
  54. S. Luding, H. J. Herrmann. Cluster growth in freely cooling granular media. Chaos, 9 (1999), No. 3, 673–681. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  55. S. Luding, M. Huthmann, S. McNamara, A. Zippelius. Homogeneous cooling of rough, dissipative particles: Theory and simulations. Phys. Rev. E, 58 (1998), 3416–3425. [CrossRef] [Google Scholar]
  56. S. Luding, S. McNamara. How to handle the inelastic collapse of a dissipative hard-sphere gas with the TC model. Granular Matter, 1 (1998), No. 3, 113–128. [CrossRef] [Google Scholar]
  57. S. McNamara. Hydrodynamic modes of a uniform granular medium. Phys. of Fluids A, 5 (1993), 3056–3070. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  58. S. McNamara W. R. Young. Dynamics of a freely evolving, two-dimensional granular medium. Phys. Rev. E, 53 (1996), 5089–5100. [CrossRef] [Google Scholar]
  59. S. Miller. Clusterbildung in Granularen Gasen. (in German). Ph.D. thesis, Universität Stuttgart, 2003. [Google Scholar]
  60. S. Miller, S. Luding. Cluster growth in two- and three-dimensional granular gases. Phys. Rev. E, 69 (2004), No. 3, 031305. [CrossRef] [Google Scholar]
  61. J. M. Montanero, V. Garzò, M. Alam, S. Luding. Rheology of 2d and 3d granular mixtures under uniform shear flow: Enskog kinetic theory versus molecular dynamics simulations. Granular Matter, 8 (2006), No. 2, 103–115. [CrossRef] [Google Scholar]
  62. M.-K. Müller. Untersuchung von Akkretionsscheiben mit Hilfe der Molekulardynamik. (in German). Diploma thesis, Universität Stuttgart, 2001. [Google Scholar]
  63. M.-K. Müller. Long-Range Interactions In Dilute Granular Systems. Ph.D. thesis, Universiteit Twente/Enschede, 2007. [Google Scholar]
  64. M.-K. Müller, S. Luding. Long-range interactions in ring-shaped particle aggregates. In R. García-Rojo, H.J. Herrmann, S. McNamara, editors, Powders & Grains, pages 1119–1122, Balkema, Leiden, 2005. [Google Scholar]
  65. M.-K. Müller, S. Luding. Homogeneous cooling with repulsive and attractive long-range interactions. In M. Nakagawa S. Luding, editors, Powders & Grains, pages 697–700, AIP Conf. Procs. #1145, 2009. [Google Scholar]
  66. M.-K. Müller, T. Winkels, K.B. Geerse, J.C.M. Marijnissen, A. Schmidt-Ott, S. Luding. Experiment and simulation of charged particle sprays. In Proceedings PARTEC 2004, Nuremberg, 2004. [Google Scholar]
  67. B. Muth, M.-K. Müller, P. Eberhard, S. Luding. Contacts between many bodies. In W. Kurnik, editor, Machine Dynamics Problems, pages 101–114, Warsaw, 2004. [Google Scholar]
  68. E. Németh. Triboelektrische Aufladung von Kunststoffen. (in German). Ph.D. thesis, Technische Universität Bergakademie Freiberg, 2003. [Google Scholar]
  69. F. Niermöller. Ladungsverteilung in Mineralgemischen und elektrostatische Sortierung nach Triboaufladung. (in German). Ph.D. thesis, Technische Universität Clausthal, 1988. [Google Scholar]
  70. J. S. Olafsen, J. S. Urbach. Clustering, order, and collapse in a driven granular monolayer. Phys. Rev. Lett., 81 (1998), 4369. [CrossRef] [Google Scholar]
  71. J. A. G. Orza, R. Brito, T. P. C. van Noije, M. H. Ernst. Patterns and long range correlations in idealized granular flows. Int. J. of Mod. Phys. C, 8 (1997), No. 4, 953–965. [CrossRef] [Google Scholar]
  72. T. Pöschel S. Luding, editors. Granular Gases, Lecture Notes in Physics 564. Springer, Berlin, 2001. [Google Scholar]
  73. R. Ramírez, T. Pöschel, N. V. Brilliantov, T. Schwager. Coefficient of restitution of colliding viscoelastic spheres. Phys. Rev. E, 60 (1999), 4465–4472. [CrossRef] [Google Scholar]
  74. F. H. Ree, W. G. Hoover. Fifth and sixth virial coefficients for hard spheres and hard disks. J. Chem. Phys., 40 (1964), No. 4, 939–950. [CrossRef] [MathSciNet] [Google Scholar]
  75. T. N. Scheffler. Kollisionskühlung in elektrisch geladener granularer Materie. (in German). Ph.D. thesis, Gerhard-Mercator-Universität Duisburg, 2000. [Google Scholar]
  76. T. N. Scheffler, D. E. Wolf. Collision rates in charged granular gases. Granular Matter, 4 (2002), No. 3, 103–113. [CrossRef] [Google Scholar]
  77. T. Schwager, T. Pëoschel. Coefficient of restitution of viscous particles and cooling rate of granular gases. Phys. Rev. E, 57 (1998), 650–654. [CrossRef] [Google Scholar]
  78. F. Spahn, J. Schmidt. Saturn’s bared mini-moons. Nature, 440 (2006), 614–615. [CrossRef] [PubMed] [Google Scholar]
  79. V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker, D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman, A. Evrard, J. Colberg, F. Pearce. Simulating the joint evolution of quasars, galaxies and their large-scale distribution. Nature, 435 (2005), 629–636. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  80. U. Trottenberg, C. W. Oosterlee, A. Schüller. Multigrid. Academic Press, San Diego, 2001. [Google Scholar]
  81. T. P. C. van Noije, M. H. Ernst, R. Brito. Ring kinetic theory for an idealized granular gas. Physica A, 251 (1998), 266–283. [NASA ADS] [CrossRef] [Google Scholar]
  82. J. H. Werth, S. M. Dammer, Z. Farkas, H. Hinrichsen, D. E. Wolf. Agglomeration in charged suspensions. Computer Physics Communications, 147 (2002), 259–262. [CrossRef] [Google Scholar]
  83. J. H. Werth, H. Knudsen, H. Hinrichsen. Agglomeration of oppositely charged particles in nonpolar liquids. Phys. Rev. E, 73 (2006), 021402. [CrossRef] [Google Scholar]
  84. J. H. Werth, M. Linsenbuhler, S. M. Dammer, Z. Farkas, H. Hinrichsen, K.-E. Wirth, D. E. Wolf. Agglomeration of charged nanopowders in suspensions. Powder Technology, 133 (2003), 106–112. [CrossRef] [Google Scholar]
  85. D. E. Wolf, T. N. Scheffler, J. Schäfer. Granular flow, collisional cooling and charged grains. Physica A, 274 (1999), 171–181. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.