Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 6, Number 4, 2011
Granular hydrodynamics
|
|
---|---|---|
Page(s) | 151 - 174 | |
DOI | https://doi.org/10.1051/mmnp/20116407 | |
Published online | 18 July 2011 |
- A. E. Beylich. Solving the kinetic equation for all Knudsen numbers. Phys. Fluids 12 (2000), 444–465. [CrossRef] [Google Scholar]
- G. A. Bird. Molecular gas dynamics and the direct simulation theory of gas flows. Oxford University Press, 1994. [Google Scholar]
- M. Bisi, G. Spiga, and G. Toscani. Grad’s equations and hydrodynamics for weakly inelastic flows. Phys. Fluids 16 (2004), 4235–4247. [CrossRef] [MathSciNet] [Google Scholar]
- A. V. Bobylev. The Chapman-Enskog and Grad methods for solving the Boltzmann equation. Sov. Phys., dokl 27 (1982), 29–31. [Google Scholar]
- J. J. Brey, J.W. Dufty, C. S. Kim and A. Santos. Hydrodynamics for granular flows at low density. Phys. Rev. E 58 (1997), 4638–4653. [CrossRef] [Google Scholar]
- J. J. Brey, W.-J Ruiz-Montero, and F. Moreno.. Hydrodynamics of an open vibrated system. Phys. Rev. E 63 (2001), 061305. [CrossRef] [Google Scholar]
- N.V. Briliantov and T. Pöschel. Kinetic theory of granular gases. Oxford University Press, Oxford, 2004. [Google Scholar]
- C. S. Campbell. Rapid granular flows. Annu. Rev. Fluid Mech. 22 (1990), 57–92. [Google Scholar]
- C. Cercignani. Theory and application of the Boltzmann equation. Scottish Acad. Press, Edinburgh and London, 1975. [Google Scholar]
- S. Chapman and T. G. Cowling. The mathematical theory of nonuniform gases. Cambridge University Press, Cambridge, 1970. [Google Scholar]
- L. García-Colin, R. M. Velasco, and F. J. Uribe. Inconsistency in the moment’s method for solving the Boltzmann equation. J. Non-Equilib. Thermodyn. 29 (2004), 257–277. [CrossRef] [Google Scholar]
- V. Garzó and J. W. Dufty. Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59 (1998), 5895–5911. [Google Scholar]
- I. Goldhirsch. Rapid granular flows. Annu. Rev. Fluid Mech. 35 (2003), 267–293. [Google Scholar]
- S. H. Noskowicz, D. Serero, and O. Bar-Lev. Generating functions and kinetic theory: a computer aided method. Application: constitutive relations for granular gases up to moderate densities. in preparation (2011). [Google Scholar]
- A. Goldshtein and M. Shapiro. Mechanics of collisional motion of granular materials, part 1: general hydrodynamic equations. J. Fluid Mech. 282 (1995), 75–114. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- H. Grad. On the kinetic theory of rarefied gases. Commun. Pure Appl. Maths 2 (1949), 331–407. [Google Scholar]
- I. N. Ivchenko, S. K. Loyalka, and R.V. Thompson. The polynomial expansion method for boundary value problems of transport in rarefied gases. Z. angew. Math. Phys. 49 (1998), 955–966. [CrossRef] [MathSciNet] [Google Scholar]
- J. T. Jenkins and M. W. Richman. Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Rational. Mech. Anal. 28 (2001), 355–377. [Google Scholar]
- M. N. Kogan. Rarefied gas dynamics. Plenum, New York, 1969. [Google Scholar]
- C. D. Levermore and W.J. Morokoff. The gaussian moment closure for gas dynamics. SIAM J.App. Math. 59 (1998), 72–96. [CrossRef] [Google Scholar]
- D. Mintzer. Generalized orthogonal polynomial solutions of the Boltzmann equation. Phys. Fluids 8 (1965), 1076–1090. [CrossRef] [Google Scholar]
- R. Nagai, H. Honma, K. Maeno, and A. Sakurai. Shock wave solution of the Boltzmann kinetic equation in a 13-moment approximation. Shock Waves 13 (2003), 213–220. [CrossRef] [Google Scholar]
- S. H. Noskowicz, O. Bar-Lev, D. Serero, and I. Goldhirsch. Computer-aided kinetic theory and granular gases. Europhys. Lett. 79 (2007), 60001. [CrossRef] [MathSciNet] [Google Scholar]
- Y. G. Ohr. Improvement of the grad 13 moment method for strong shock waves. Phys. Fluids 13 (2001), 2105–2114. [CrossRef] [MathSciNet] [Google Scholar]
- R. Ramirez, D. Risso, R. Soto, and P. Cordero. Hydrodynamic theory for granular gases. Phys. Rev. E 62 (2000), 2521–2530. [CrossRef] [Google Scholar]
- P. Rosenau, Extending hydrodynamics via the regularization of the Chapman-Enskog expansion. Phys. Rev. A 40 (1989), 7193–7196. [Google Scholar]
- N. Sela and I. Goldhirsch. Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J. Fluid Mech. 361 (1998), 41–74. [CrossRef] [MathSciNet] [Google Scholar]
- R. Soto. Granular systems on a vibrating wall: the kinetic boundary condition. Phys. Rev. E 69 (2004), 61305–61310. [Google Scholar]
- H. Struchtrup and M. Torrilhon. Regularization of Grad’s 13 momemt equations: derivation and linear analysis. Phys. Fluids 15 (2003), 2668–2680. [CrossRef] [MathSciNet] [Google Scholar]
- T. Thatcher, Y. Zheng, and H. Struchtrup. Boundary conditions for Grad’s 13 moment equations. Progress in Computational Fuid Dynamics 8 (2008), 69–83. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.