Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 4, 2011
Granular hydrodynamics
Page(s) 175 - 190
DOI https://doi.org/10.1051/mmnp/20127108
Published online 18 July 2011
  1. E. Ben-Naim, S. Y. Chen, G. D. Doolen, S. Redner. Shock-like dynamics of inelastic gases. Phys. Rev. Lett., 83 (1999), 4069–4072. [CrossRef] [Google Scholar]
  2. J. J. Brey, D. Cubero. Hydrodynamic transport coefficients of granular gases. In Pöschel and Luding [28], 59–78. [Google Scholar]
  3. J. J. Brey, J. W. Dufty, C. S. Kim, A. Santos. Hydrodynamics for granular flow at low density. Phys. Rev. E, 58 (1998), 4638–4653. [CrossRef] [Google Scholar]
  4. J. J. Brey, M. J. Ruiz-Montero, D. Cubero. Origin of density clustering in a freely evolving granular gas. Phys. Rev. E, 60 (1999), 3150–3157. [CrossRef] [Google Scholar]
  5. N. V. Brilliantov, T. Poeschel. Kinetic Theory of Granular Gases. University Press, Oxford, 2004. [Google Scholar]
  6. N. V. Brilliantov, T. Pöschel. Hydrodynamics of granular gases of viscoelastic particles. Phil. Trans. R. Soc. Lond. A, 360 (2001), 415–428. [Google Scholar]
  7. N. V. Brilliantov, T. Pöschel. Hydrodynamics and transport coefficients for granular gases. Phys. Rev. E, 67 (2003), 061304. [CrossRef] [Google Scholar]
  8. N. V. Brilliantov, C. Saluena, T. Schwager, T. Pöschel. Transient structures in a granular gas. Phys. Rev. Lett., 93 (2004), 134301. [CrossRef] [PubMed] [Google Scholar]
  9. N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, T. Pöschel. Model for collisions in granular gases. Phys. Rev. E, 53 (1996), 5382–5393. [NASA ADS] [CrossRef] [Google Scholar]
  10. R. Brito, M. H. Ernst. Extension of Haff’s cooling law in granular flows. Europhys. Lett., 43 (1998), 497–504. [CrossRef] [Google Scholar]
  11. J. A. Carrillo, T Pöschel, C. Salueña. Granular hydrodynamics and pattern formation in vertically oscillated granular disk layers. J. Fluid Mech., 597 (2008), 119–144. [MathSciNet] [Google Scholar]
  12. E. Efrati, E. Livne, B. Meerson. Hydrodynamic singularities and clustering instability in a freely cooling inelastic gas. Phys. Rev. Lett., 94 (2005), 088001. [CrossRef] [PubMed] [Google Scholar]
  13. V. Garzo. Enskog constitutive equations for hard disks. preprint (2008). [Google Scholar]
  14. V. Garzo, J. W. Dufty. Dense fluid transport for inelastic hard spheres. Phys. Rev. E, 59 (1999), 5895–5911. [CrossRef] [Google Scholar]
  15. I. Goldhirsch, G. Zanetti. Clustering instability in dissipative gases. Phys. Rev. Lett., 70 (1993), 1619-1622. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  16. A. Goldshtein, M. Shapiro. Mechanics of collisional motion of granular materials. Part 1: General hydrodynamic equations. J. Fluid Mech., 282 (1995), 75–114. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  17. S. A. Hill, G. F. Mazenko. Granular clustering in a hydrodynamic simulation. Phys. Rev. E, 67 (2003), 061302. [CrossRef] [Google Scholar]
  18. J. T. Jenkins, M. W. Richman. Grad’s 13-moment system for a dense gas of inelastic spheres. Archives for Particle Mechanics and Analysis, 87 (1985), 355–377. [Google Scholar]
  19. E. Khain, B. Meerson. Symmetry-breaking instability in a prototypical driven granular gas. Phys. Rev. E, 66 (2002), 021306. [CrossRef] [MathSciNet] [Google Scholar]
  20. G. Kuwabara, K. Kono. Restitution coefficient in a collision between two spheres. Jpn. J. Appl. Phys., 26 (1987), 1230–1233. [CrossRef] [Google Scholar]
  21. C. K. K. Lun, S. B. Savage, D. J. Jeffrey, N. Chepurniy. Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech., 140 (1984), 223–256 . [CrossRef] [Google Scholar]
  22. J. F. Lutsko. Transport properties of dense dissipative hard-sphere fluids for arbitrary energy loss models. Phys. Rev. E, 72 (2005), 021306. [CrossRef] [Google Scholar]
  23. B. Meerson, A. Puglisi. Towards a continuum theory of clustering in a freely cooling inelastic gas. Europhys. Lett., 70 (2005), 478–484. [CrossRef] [Google Scholar]
  24. W. A. M. Morgado, I. Oppenheim. Energy dissipation for quasielastic granular particle collisions. Phys. Rev. E, 55 (1997), 1940–1945. [CrossRef] [Google Scholar]
  25. X. Nie, E. Ben-Naim, S. Y. Chen. Dynamics of freely cooling granular gases. Phys. Rev. Lett., 89 (2002), 204301. [CrossRef] [PubMed] [Google Scholar]
  26. T. Pöschel, N. V. Brilliantov, editors. Granular Gas Dynamics, Lecture Notes in Physics Vol. 624. Springer, Berlin, 2003. [Google Scholar]
  27. T. Pöschel, N. V. Brilliantov, T. Schwager. Long-time behavior of granular gases with impact-velocity dependent coefficient of restitution. Physica A, 325 (2003), 274–283. [CrossRef] [MathSciNet] [Google Scholar]
  28. T. Pöschel, S. Luding, editors. Granular Gases, Lecture Notes in Physics Vol. 564. Springer, Berlin, 2001. [Google Scholar]
  29. A. Puglisi, M. Assaf, I. Fouxon, B. Meerson. Attempted density blowup in a freely cooling dilute granular gas: Hydrodynamics versus molecular dynamics. Phys. Rev. E, 77 (2008), 021305. [CrossRef] [Google Scholar]
  30. R. Ramírez, T. Pöschel, N. V. Brilliantov, T. Schwager. Coefficient of restitution for colliding viscoelastic spheres. Phys. Rev. E, 60 (1999), 4465–4472. [CrossRef] [Google Scholar]
  31. P. Resibois, M. de Leener. Classical Kinetic Theory of Fluids. Wiley & Sons, New York, 1977. [Google Scholar]
  32. T. Schwager, T. Pöschel. Coefficient of restitution of viscous particles and cooling rate of granular gases. Phys. Rev. E, 57 (1998), 650–654. [CrossRef] [Google Scholar]
  33. N. Sela, I. Goldhirsch. Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J. Fluid Mech., 361 (1998), 41–74. [CrossRef] [MathSciNet] [Google Scholar]
  34. S. F. Shandarin, Ya. B. Zeldovich. The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium. Rev. Mod. Phys., 61 (1989), 185–222. [NASA ADS] [CrossRef] [Google Scholar]
  35. F. Spahn, U. Schwarz, J. Kurths. Clustering of granular assemblies with temperature dependent restitution and under keplerian differential rotation. Phys. Rev. Lett., 78 (1997), 1596–1599. [CrossRef] [Google Scholar]
  36. S. Torquato. Nearest-neighbor statistics for packings of hard spheres and disks. Phys. Rev. E, 51 (1995), 3170–3555. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.