Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 4, 2011
Granular hydrodynamics
Page(s) 175 - 190
DOI https://doi.org/10.1051/mmnp/20127108
Published online 18 July 2011
  1. E. Ben-Naim, S. Y. Chen, G. D. Doolen, S. Redner. Shock-like dynamics of inelastic gases. Phys. Rev. Lett., 83 (1999), 4069–4072. [CrossRef]
  2. J. J. Brey, D. Cubero. Hydrodynamic transport coefficients of granular gases. In Pöschel and Luding [28], 59–78.
  3. J. J. Brey, J. W. Dufty, C. S. Kim, A. Santos. Hydrodynamics for granular flow at low density. Phys. Rev. E, 58 (1998), 4638–4653. [CrossRef]
  4. J. J. Brey, M. J. Ruiz-Montero, D. Cubero. Origin of density clustering in a freely evolving granular gas. Phys. Rev. E, 60 (1999), 3150–3157. [CrossRef]
  5. N. V. Brilliantov, T. Poeschel. Kinetic Theory of Granular Gases. University Press, Oxford, 2004.
  6. N. V. Brilliantov, T. Pöschel. Hydrodynamics of granular gases of viscoelastic particles. Phil. Trans. R. Soc. Lond. A, 360 (2001), 415–428.
  7. N. V. Brilliantov, T. Pöschel. Hydrodynamics and transport coefficients for granular gases. Phys. Rev. E, 67 (2003), 061304. [CrossRef]
  8. N. V. Brilliantov, C. Saluena, T. Schwager, T. Pöschel. Transient structures in a granular gas. Phys. Rev. Lett., 93 (2004), 134301. [CrossRef] [PubMed]
  9. N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, T. Pöschel. Model for collisions in granular gases. Phys. Rev. E, 53 (1996), 5382–5393. [NASA ADS] [CrossRef]
  10. R. Brito, M. H. Ernst. Extension of Haff’s cooling law in granular flows. Europhys. Lett., 43 (1998), 497–504. [CrossRef]
  11. J. A. Carrillo, T Pöschel, C. Salueña. Granular hydrodynamics and pattern formation in vertically oscillated granular disk layers. J. Fluid Mech., 597 (2008), 119–144. [MathSciNet]
  12. E. Efrati, E. Livne, B. Meerson. Hydrodynamic singularities and clustering instability in a freely cooling inelastic gas. Phys. Rev. Lett., 94 (2005), 088001. [CrossRef] [PubMed]
  13. V. Garzo. Enskog constitutive equations for hard disks. preprint (2008).
  14. V. Garzo, J. W. Dufty. Dense fluid transport for inelastic hard spheres. Phys. Rev. E, 59 (1999), 5895–5911. [CrossRef]
  15. I. Goldhirsch, G. Zanetti. Clustering instability in dissipative gases. Phys. Rev. Lett., 70 (1993), 1619-1622. [NASA ADS] [CrossRef] [PubMed]
  16. A. Goldshtein, M. Shapiro. Mechanics of collisional motion of granular materials. Part 1: General hydrodynamic equations. J. Fluid Mech., 282 (1995), 75–114. [NASA ADS] [CrossRef] [MathSciNet]
  17. S. A. Hill, G. F. Mazenko. Granular clustering in a hydrodynamic simulation. Phys. Rev. E, 67 (2003), 061302. [CrossRef]
  18. J. T. Jenkins, M. W. Richman. Grad’s 13-moment system for a dense gas of inelastic spheres. Archives for Particle Mechanics and Analysis, 87 (1985), 355–377.
  19. E. Khain, B. Meerson. Symmetry-breaking instability in a prototypical driven granular gas. Phys. Rev. E, 66 (2002), 021306. [CrossRef] [MathSciNet]
  20. G. Kuwabara, K. Kono. Restitution coefficient in a collision between two spheres. Jpn. J. Appl. Phys., 26 (1987), 1230–1233. [CrossRef]
  21. C. K. K. Lun, S. B. Savage, D. J. Jeffrey, N. Chepurniy. Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech., 140 (1984), 223–256 . [CrossRef]
  22. J. F. Lutsko. Transport properties of dense dissipative hard-sphere fluids for arbitrary energy loss models. Phys. Rev. E, 72 (2005), 021306. [CrossRef]
  23. B. Meerson, A. Puglisi. Towards a continuum theory of clustering in a freely cooling inelastic gas. Europhys. Lett., 70 (2005), 478–484. [CrossRef]
  24. W. A. M. Morgado, I. Oppenheim. Energy dissipation for quasielastic granular particle collisions. Phys. Rev. E, 55 (1997), 1940–1945. [CrossRef]
  25. X. Nie, E. Ben-Naim, S. Y. Chen. Dynamics of freely cooling granular gases. Phys. Rev. Lett., 89 (2002), 204301. [CrossRef] [PubMed]
  26. T. Pöschel, N. V. Brilliantov, editors. Granular Gas Dynamics, Lecture Notes in Physics Vol. 624. Springer, Berlin, 2003.
  27. T. Pöschel, N. V. Brilliantov, T. Schwager. Long-time behavior of granular gases with impact-velocity dependent coefficient of restitution. Physica A, 325 (2003), 274–283. [CrossRef] [MathSciNet]
  28. T. Pöschel, S. Luding, editors. Granular Gases, Lecture Notes in Physics Vol. 564. Springer, Berlin, 2001.
  29. A. Puglisi, M. Assaf, I. Fouxon, B. Meerson. Attempted density blowup in a freely cooling dilute granular gas: Hydrodynamics versus molecular dynamics. Phys. Rev. E, 77 (2008), 021305. [CrossRef]
  30. R. Ramírez, T. Pöschel, N. V. Brilliantov, T. Schwager. Coefficient of restitution for colliding viscoelastic spheres. Phys. Rev. E, 60 (1999), 4465–4472. [CrossRef]
  31. P. Resibois, M. de Leener. Classical Kinetic Theory of Fluids. Wiley & Sons, New York, 1977.
  32. T. Schwager, T. Pöschel. Coefficient of restitution of viscous particles and cooling rate of granular gases. Phys. Rev. E, 57 (1998), 650–654. [CrossRef]
  33. N. Sela, I. Goldhirsch. Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J. Fluid Mech., 361 (1998), 41–74. [CrossRef] [MathSciNet]
  34. S. F. Shandarin, Ya. B. Zeldovich. The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium. Rev. Mod. Phys., 61 (1989), 185–222. [NASA ADS] [CrossRef]
  35. F. Spahn, U. Schwarz, J. Kurths. Clustering of granular assemblies with temperature dependent restitution and under keplerian differential rotation. Phys. Rev. Lett., 78 (1997), 1596–1599. [CrossRef]
  36. S. Torquato. Nearest-neighbor statistics for packings of hard spheres and disks. Phys. Rev. E, 51 (1995), 3170–3555. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.