Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 5, 2011
Complex Fluids
Page(s) 157 - 183
DOI https://doi.org/10.1051/mmnp/20116508
Published online 10 August 2011
  1. M. Avrami. Kinetics of Phase Change. I. General Theory. J. Chem. Phys., 7 (1939), No. 12, 1103–1112. [NASA ADS] [CrossRef]
  2. M. Avrami. Kinetics of Phase Change. II. Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys., 8 (1940), No. 2, 212–224. [NASA ADS] [CrossRef]
  3. M. Avrami. Kinetics of Phase Change. III. Granulation, Phase Change, and Microstructure. J. Chem. Phys., 9 (1941), No. 2, 177–184. [NASA ADS] [CrossRef]
  4. L.F.A. Azevedo, A.M. Texeira. A critical review of the modeling of wax deposition mechanisms. Pet. Sci. Technol., 21 (2003), No. 3& 4, 393–408. [CrossRef]
  5. E.D. Burger, T.K. Perkins, J.H.J. Striegler. Studies of wax deposition in the trans Alaska pipeline. J. Pet. Technol., June (1981), 1075–1086..
  6. E. Comparini, F. Talamucci. A general model for wax diffusion in crude oils under thermal gradient, in Applied and Industrial Mathematics in Italy, (v. Cutello et al. eds.), World Scientific (2007), 259–270.
  7. S. Correra, A. Fasano, L. Fusi, M. Primicerio, F. Rosso. Wax diffusivity under given thermal gradient: a mathematical model, ZAMM Z. Angew. Math. Mech., 87 (2007), No. 1, 24–36. [CrossRef] [MathSciNet]
  8. S. Correra, A. Fasano, L. Fusi, M. Primicerio. Modelling of wax diffusion in crude oils: the cold finger device, Appl. Math. Modl., 31 (2007), No. 10, 2286–2298. [CrossRef]
  9. S. Correra, A. Fasano, L. Fusi L., D. Merino–Garcia D.. Calculating deposit formation in the pipelining of waxy crude oils. Meccanica, 42 (2007), No. 2, 149–165. [CrossRef] [MathSciNet]
  10. B. Coto, C. Martos, J.J. Espada, M.D. Robustillo, J.L. Peña. Analysis of paraffin precipitation from petroleum mixtures by means of DSC: iterative procedure considering solid-liquid equilibrium equations. Fuel, 89 (2010), 1087–1094. [CrossRef]
  11. J.A.P. Coutinho, K. Knudsen, S.I. Andersen. A local composition model for paraffinic solis solution. Chem. Eng. Science, 51 (1996), No. 12, 3273–3282. [CrossRef]
  12. J.A.P. Coutinho, V. Ruffier-Meary. The use of differential scanning calorimetry in studies of wax deposition: measuring the solid formation and binary solid-liquid equilibrium phase diagrams. Oil Gas Sci. Technol., 54 (1999), No. 5, 641–648. [CrossRef] [EDP Sciences]
  13. J.A.P. Coutinho, B. Edmonds, T. Moorwood, R. Szczepanski, X. Zhang. Reliable wax predictions for flow assurance. Energ. Fuel, 20 (2006), 1081–1088. [CrossRef]
  14. J.C. Escobar-Remolina. Prediction of characteristics of wax precipitation in synthetic mixtures and fluids of petroleum: a new model. Fluid Phase Equilibr., 240 (2006), 197–203. [CrossRef]
  15. L. Faienza. Mathematical models for wax deposition in crude oils. PhD Thesis, Dept. of Math., University of Florence (2010).
  16. A. Fasano, M. Primicerio. Heat and mass transfer in non-isothermal partially saturated solutions. New Trends in Mathematical Physics,(P. Fergola et al. eds.), World Scientific (2003), 33–44.
  17. A. Fasano, M. Primicerio. Temperature driven mass transport in concentrated saturated solutions. Prog. nonlin., 61 (2005), 91-108.
  18. A. Fasano, M. Primicerio. Wax deposition in crude oil: a new approach. Rend. Mat. Acc. Lincei, 9 (2005), 251-263.
  19. A. Fasano, L. Fusi, J.R. Ockendon, M. Primicerio. Gelification and mass transport in a static non-isothermal waxy solution. Euro. J. of Appl. Math., 20 (2009), No. 1, 93–122. [CrossRef]
  20. R. Gianni, A.G. Petrova. One-dimensional problem for heat and mass transport in oil-wax solution. Rend. Mat. Acc. Lincei, 9 (2005), 181–196.
  21. A. Hammami, A.K. Mehrotra. Non-isothermal crystallization kinetics of n-paraffins with chain lenght between thirty and fifty. Thermochim. Acta, 211 (1992), 137–153. [CrossRef]
  22. A. Hammami, A.K. Mehrotra. Non-isothermal crystallization kinetics of even-numbered and odd-numbered normal alkanes. Thermochim. Acta, 215 (1993), 197–209. [CrossRef]
  23. A.N. Kolmogorov. In Russian. Bull. Acad. Sci. USSR. Ser. Math., 3 (1937), 355–359.
  24. M. Margarone, R. Bagatin, C. Busto, P. D’Olimpio, L. Fusi, L. Faienza, A. Fasano, M. Primicerio. A wax crystallization model from DSC experiments. 11th International Conference on Petroleum Phase Behavior and Fouling, 13 - 17 June 2010, Jersey City, NJ, US.
  25. D. Merino-Garcia, M. Margarone, S. Correra. Kinetics of waxy gel formation from batch experiments. Energ. Fuel, 21 (2007), 1287–1295. [CrossRef]
  26. T. Ozawa. Kinetics of non-isothermal crystallization. Polymer, 12 (1971), 150–158. [CrossRef]
  27. S.K. Pedersen, P. Skovborg, P.D. Hans. Wax Precipitation from North Sea Crude Oils: Thermodyamic Modeling. Energ. Fuel, 5 (1991), 924–932. [CrossRef]
  28. M. Primicerio. Wax Segregation in Oils: A Multiscale Problem. in Progress in Industrial Mathematics at ECMI 2008 (A.D.Fitt et al. eds.), Springer 2010, pp 43-68.
  29. E. Ramirez-Jaramillo, C. Lira-Galeana, O. Manero. Modeling wax deposition in pipelines. Petrol. Sci. Technol., 22 (2004), 821–861. [CrossRef]
  30. P. Sajkiewicz, L. Carpaneto, A. Wasiak. Application of the Ozawa model to non-isothermal crystallization of poly(ethylene terephthalete). Polymer, 42 (2001), 5365–5370. [CrossRef]
  31. P. Singh, R. Venkatesan, H.S. Fogler, N. Nagarajan. Formation and aging of incipient thin film wax-oil gels. AIChE J., 46 (2000), No. 5, 1059–1074 [CrossRef]
  32. K.W. Won. Thermodynamics for Solid Solution-Liquid-Vapor-Equilibria: Wax Phase Formation from Heavy Hydrocarbon Mixtures. Fluid Phase Equilibr., 30 (1986), 265–279. [CrossRef]
  33. Z. Zhang, C. Xiao, Z. Dong. Comparison of the Ozawa and modified Avrami models of polymer crystallization under non-isothermal conditions using a commputer simulation method. Thermochim. Acta, 466 (2007), 22–28. [CrossRef]
  34. M.I. Zougari, T. Sopkow. Introduction to Crude Oil Wax Crystallization Kinetics: Process Modeling. Ind. Eng. Chem. Res., 46 (2007), 1360–1368. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.