Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 5, 2011
Complex Fluids
Page(s) 130 - 156
Published online 10 August 2011
  1. D.N. Arnold, F. Brezzi, J. Douglas. PEERS: A new mixed finite element for plane elasticity. Japan J. Appl. Math., 1 (1984), 347–367. [CrossRef] [MathSciNet] [Google Scholar]
  2. J. Baranger, D. Sandri. A formulation of Stokes’s problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow. M2AN, 26 (1992), 331–345. [Google Scholar]
  3. F. Brezzi, M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin, 1991. [Google Scholar]
  4. P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, 1978. [Google Scholar]
  5. P. Clément. Approximation by finite element functions using local regularization. RAIRO Anal. Numer., 2 (1975), 77–84. [Google Scholar]
  6. C. Cox, H. Lee, D. Szurley. Finite element approximation of the non–isothermal Stokes–Oldroyd equations. Int. J. Numer. Anal. Mod., 4 (2007), 425–440. [Google Scholar]
  7. S. Damak Besbes, C. Guillopé. Non-isothermal flows of viscoelastic incompressible fluids. Nonlinear Analysis, 44 (2001), 919–942. [Google Scholar]
  8. J. Douglas, Jr., J.E. Roberts. Global estimates for mixed methods for second order elliptic equations. Math. Comp., 44 (1985), 39–52. [CrossRef] [MathSciNet] [Google Scholar]
  9. L.C. Evans. Partial Differential Equations. Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 1999. [Google Scholar]
  10. M. Farhloul, M. Fortin. A new mixed finite element for the Stokes and elasticity problems. SIAM J. Numer. Anal., 30 (1993), 971–990. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Farhloul, M. Fortin. Dual hybrid methods for the elasticity and the Stokes problems: a unified approach. Numer. Math., 76 (1997), 419–440. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Farhloul, A.M. Zine. A new mixed finite element method for the Stokes problem. J. Math. Anal. Appl., 276 (2002), 329–342. [CrossRef] [MathSciNet] [Google Scholar]
  13. P. Grisvard. Problèmes aux limites dans les polygones, mode d’emploi. EDF Bull. Direction Etudes Rech. Sér. C Math. Inform., 1 (1986), 21–59. [Google Scholar]
  14. J.C. Nedelec. Mixed finite elements in ℝ3. Numer. Math., 35 (1980), 315–341. [CrossRef] [MathSciNet] [Google Scholar]
  15. G.W.M. Peters, F.T.O. Baaijens. Modelling of non-isothermal viscoelastic flow. J. Non-Newtonian Fluid Mech., 68 (1997), 205–224. [CrossRef] [Google Scholar]
  16. P.A. Raviart, J.M. Thomas. A mixed finite element method for 2nd order elliptic problems, Lecture Notes in Mathematics, Vol. 606, Springer-Verlag, New-York, 1977, pp. 292-315. [Google Scholar]
  17. J.E. Roberts, J.M. Thomas. Mixed and hybrid finite element methods, Handbook of Numerical Analysis, vol. II, Finite Element Methods (part I), P.G Ciarlet, J.L. Lions (Eds.), North-Holland, 1989. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.