Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 5, 2011
Complex Fluids
Page(s) 98 - 129
DOI https://doi.org/10.1051/mmnp/20116506
Published online 10 August 2011
  1. H.C. Berg. Random walks in biology. Princeton University Press, Princeton, 1983. [Google Scholar]
  2. H.C. Berg. E. Coli in Motion. Springer Verlag, New York, 2004. [Google Scholar]
  3. B.M. Haines, I.S. Aranson, L. Berlyand and D.A. Karpeev. Effective viscosity of dilute bacterial suspensions: a two-dimensional model. Physical Biology, 5 (2008), No. 4. [Google Scholar]
  4. P. G. Ciarlet. Introduction à l’analyse numérique matricielle et à l’optimisation. Masson, Paris, 1990. [Google Scholar]
  5. L.H. Cisneros, R. Cortez, C. Dombrowski, R.E. Goldstein, J.O. Kessler. Fluid dynamics of self-propelled microorganisms. from individual to concentrated populations. Exp Fluids, 43 (2007), 737–753. [CrossRef] [Google Scholar]
  6. Darnton NC, Turner L, Rojevsky S, Berg HC. Dynamics of bacterial swarming. Biophys J. 98 (2010), No. 10, 2082–90. [CrossRef] [PubMed] [Google Scholar]
  7. A. Decoene, A. Lorz, S. Martin, B. Maury, M. Tang. Simulation of self-propelled chemotactic bacteria in a Stokes flow. ESAIM: Proc, 30 (2010), 104–123 . [CrossRef] [EDP Sciences] [Google Scholar]
  8. C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, J. O. Kessler. Self-concentration and large-scale coherence in bacteria dynamics. Phys. Rev. Lett., 93 (2004), No. 9. [Google Scholar]
  9. D. Gérard-Varet, M. Hillairet. Regularity Issues in the Problem of Fluid Structure Interaction. to appear in Arch. Rational Mech. Anal. [Google Scholar]
  10. R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph & J. Périaux. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comp. Phys., 169 (2001), 363–427. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  11. R. Glowinski. Finite element methods for incompressible viscous flow. In: Handbook of Numerical Analysis, Vol. IX, P. G. Ciarlet and J.-L. Lions eds., Ed. North-Holland, Amsterdam, 2003. [Google Scholar]
  12. V. Gyrya, K. Lipnikov, I. Aranson, L. Berlyand. Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate suspensions. Journal of Mathematical Biology (accepted, 2011). [Google Scholar]
  13. Hernandez-Ortiz J.P., C. Stoltz and M.D. Graham. Transport and col lective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett., 95 (2005), pp. 204501. [Google Scholar]
  14. J. Happel, H. Brenner. Low Reynolds Number Hydrodynamics. Dordrecht, Kluwer, 1991. [Google Scholar]
  15. M. Hillairet. Lack of collision between solid bodies in a 2D constant-density incompressible flow. Communications in Partial Differential Equations 32 (2007), 1345-1371. [CrossRef] [MathSciNet] [Google Scholar]
  16. J. Janela, A. Lefebvre, B. Maury. A penalty method for the simulation of fluid-rigid body interaction. ESAIM: Proc., 1 (2007), 115–123. [Google Scholar]
  17. D. Kaiser. Bacterial swarming, a re-examination of cell movement patterns. Curr Biol, 17 (2007), R561-R570. [CrossRef] [PubMed] [Google Scholar]
  18. S. Kim, S.J. Karrila. Microhydrodynamics: Principles and Selected Applications. Dover, New York, 2005. [Google Scholar]
  19. E. Lauga and T.R. Powers. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys., 72 (2009). [Google Scholar]
  20. A. Lefebvre. Fluid-particle simulations with Freefem++. ESAIM: Proc., 18 (2007), 120–132. [CrossRef] [EDP Sciences] [Google Scholar]
  21. A. Lefebvre, B. Maury. Apparent viscosity of a mixture of a Newtonian fluid and interacting particles. Fluid-solid interactions: modeling, simulation, bio-mechanical applications. Comptes Rendus MŐcanique, 333 (2005), No. 12. [Google Scholar]
  22. B. Maury. A time-stepping scheme for inelastic collisions. Numerische Mathematik, 102 (2006), No. 4, 649–679. [CrossRef] [MathSciNet] [Google Scholar]
  23. B. Maury. Numerical Analysis of a Finite Element / Volume Penalty Method. SIAM J. Numer. Anal. 47 (2009), No. 2, 1126–1148. [CrossRef] [MathSciNet] [Google Scholar]
  24. J.T. Locsei, T.J. Pedley. Run and Tumble in Chemotaxis in a Shear Flow; The Effect of Temporal Comparisons, Persistence, Rotational Diffusion, and Cell Shape. Bulletin of Mathematical Biology, 71 (2009), 1089–1116. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  25. J.O. Kessler, T.J. Pedley. Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24 (1992), 313–58. [CrossRef] [Google Scholar]
  26. F. Peruani, L. G. Morelli. Self-propelled particles with fluctuating speed and direction of motion in two dimensions. PRL 99 (2007), 010602, 2007. [Google Scholar]
  27. S. Rafai, L. Jibuti, P. Peyla. Effective viscosity of microswimmer suspensions. Phys. Rev. Lett., 104 (2010), 098102. [CrossRef] [PubMed] [Google Scholar]
  28. D. Saintillan, M. J. Shelley. Orientational order and instabilities in suspensions of self-locomoting rods. Phys. Rev. Lett., 99 (2007), 058102. [CrossRef] [PubMed] [Google Scholar]
  29. J. E. Segall, S.M. Block, H.C. Berg. Temporal comparisons in bacterial chemotaxis. Proc. Natl . Acad. Sci. USA, 83 (1986), 8987–8991. [CrossRef] [Google Scholar]
  30. A. Sokolov, I. S. Aranson. Reduction of viscosity in suspension of swimming bacteria. Phys. Rev. Lett. 103 (2009), 148101. [CrossRef] [PubMed] [Google Scholar]
  31. A. Sokolov, R. E. Goldstein, F. I. Feldchtein, and I. S. Aranson. Enhanced mixing and spatial instability in concentrated bacterial suspensions. Phys. Rev. E 80 (2009), 031903. [CrossRef] [Google Scholar]
  32. R. Temam, A. Miranville. Mathematical modeling in continuum mechanics. Cambridge University press, 2001. [Google Scholar]
  33. L. Turner, W.S. Ryu, H.C. Berg. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol., 182 (2000), No. 10, 2793–2801. [CrossRef] [PubMed] [Google Scholar]
  34. I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J.O. Kessler, R. E. Goldstein. Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA, 102 (2005), 2277–2282. [CrossRef] [Google Scholar]
  35. S. Vincent, J. P. Caltagirone, P. Lubin & T. N. Randrianarivelo. An adaptative augmented Lagrangian method for three-dimensional multimaterial flows. Computers and Fluids, 33 (2004), 1273–1289. [CrossRef] [MathSciNet] [Google Scholar]
  36. X.-L. Wu, A. Libchaber. Particle diffusion in a quasi-two-dimensional bacterial bath. Physical Review Letters, 84 (2000), 3017–3020. [CrossRef] [PubMed] [Google Scholar]
  37. Y. Wu, D. Kaiser, Y. Jiang, M. S. Alber. Periodic reversal of direction allows Myxobacteria to swarm. Proc. Natl. Acad. Sci. USA, 106 (2009), No. 4, 1222–1227. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.