Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 5, 2011
Complex Fluids
Page(s) 84 - 97
Published online 10 August 2011
  1. J. W. Barret, C. Schwab, E. Süli. Existence of global weak solutions for some polymeric flow models. Math. Model. Meth. Appl. Sci., 15 (2005), No. 6, 939–983. [CrossRef] [MathSciNet]
  2. R. B. Bird, R. C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics. J. Wiley & Sons, New York, 1987.
  3. R. B. Bird, R. C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory. J. Wiley & Sons, New York, 1987.
  4. A. V. Busuioc, I. S. Ciuperca, D. Iftimie and L. I. Palade. The FENE dumbbell polymer model: existence and uniqueness of solutions for the momentum balance equation. Journal of Dynamics and Differential Equations, submitted, 2011.
  5. J. A. Carillo, S. Cordier, S. Mancini. A decision-making Fokker-Planck model in computational neuroscience. To appear in Journal of Mathematical Biology, 2011.
  6. L. Chupin. The FENE model for viscoelastic thin film flow. Methods Appl. Anal., 16 (2009), No. 2, 217–261. [MathSciNet]
  7. I. S. Ciuperca, L. I. Palade. The steady state configurational distribution diffusion equation of the standard FENE dumbbell polymer model: existence and uniqueness of solutions for arbitrary velocity gradients. Mathematical Models & Methods in Applied Sciences, 19 (2009), 2039–2064. [CrossRef] [MathSciNet]
  8. I. S. Ciupercă, L. I. Palade. On the existence and uniqueness of solutions of the configurational probability diffusion equation for the generalized rigid dumbbell polymer model. Dynamics of Partial Differential Equations, 7 (2010), 245–263. [MathSciNet]
  9. Q. Du, C. Liu, P. Yu. FENE dumbbell model and its several linear and nonlinear closure approximations. Multiscale Model. Simul., 4 (2005), No. 3, 709–731. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  10. D. Henry. Geometric Theory of semilinear parabolic equations. Lecture notes in mathematics, Vol. 840. Springer Verlag, New York, 1981.
  11. R. R. Huilgol, N. Phan-Thien. Fluid Mechanics of Viscoelasticity. Elsevier, Amsterdam, 1997.
  12. B. Jourdain, C. Le Bris, T. Lelièvre, F. Otto. Long-time asymptotics of a multiscale model for a polymeric fluid flows. Arch. Rational Mech. Anal., 181 (2006), 97–148. [CrossRef] [MathSciNet]
  13. J. G. Kirkwood. Macromolecules, edited by P. L. Auer. Gordon and Breach, 1968.
  14. R. G. Larson. Constitutive Equations for Polymer Melts and Solutions. Butterworths, Boston, 1988.
  15. F. Lin, P. Zhang, Z. Zhang. On the global existence of smooth solution to the 2-D FENE Dumbell Model. Commun. Math. Phys., 277 (2008), 531–553. [CrossRef]
  16. N. Masmoudi. Well-Posedness for the FENE dumbbell model of polymeric flows. Comm. Pure Appl. Math., 61 (2008), No. 12, 1685–1714. [CrossRef] [MathSciNet]
  17. F. A. Morrison. Understanding Rheology. Oxford University Press, Oxford, 2001.
  18. J. Nečas. Les méthodes directes en théorie des équations elliptiques. Masson, Paris, 1967.
  19. S. Cleja-Ţigoiu, V. Ţigoiu. Rheology and Thermodynamics, Part I - Rheology. Editura Universităţii din Bucureşti, Bucureşti, 1998.
  20. V. A. Volpert, A. I. Volpert. Location of spectrum and stability of solutions for monotone parabolic system. Advances in Differential Equations, 2 (1997), No. 5, 811–830. [MathSciNet]
  21. H. Zhang, P. Zhang. Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ratl. Mech. Anal., 181 (2006), 373–400. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.