Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 5, 2011
Complex Fluids
Page(s) 67 - 83
Published online 10 August 2011
  1. J. Baranger, A. Machmoum. Existence of approximate solutions and error bounds for viscoelastic fluid flow: characteristics method. Comput. Methods Appl. Mech. Engrg. , 148 (1997), No. 1-2, 39–52. [CrossRef] [MathSciNet] [Google Scholar]
  2. J. Baranger, D. Sandri. Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds. I. Discontinuous constraints. Numer. Math., 63 (1992), No. 1, 13–27. [CrossRef] [MathSciNet] [Google Scholar]
  3. R.B. Bird, R.C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids. Wiley-Interscience, 1987. [Google Scholar]
  4. J.R. Blake, P.G. Vann, H Winet. A model of ovum transport. J. Theor. Biol., 102 (1983), No. 1, 145–166. [CrossRef] [PubMed] [Google Scholar]
  5. S. Boyarski, C. Gottschalk, E. Tanagho, P. Zimskind. Urodynamics: Hydrodynamics of the Ureter and the Renal Pelvis. Academic Press, New York, 1971. [Google Scholar]
  6. A. Brooks, T. Hughes. Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32 (1982), No. (1-3), 199–259. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.C. Chrispell, V.J. Ervin, E.W. Jenkins. A fractional step [theta]-method approximation of time-dependent viscoelastic fluid flow. Journal of Computational and Applied Mathematics, 232 (2009), No. 2, 159–175. [CrossRef] [MathSciNet] [Google Scholar]
  8. K. Connington, Q. Kang, H. Viswanathan, A. Abdel-Fattah, S. Chen. Peristaltic particle transport using the lattice boltzmann method. Phys. of Fluids, 21 (2009), No. 5, 053301. [CrossRef] [Google Scholar]
  9. A.W. El-Kareh, L.G. Leal. Existence of solutions for all deborah numbers for a non-Newtonian model modified to include diffusion. Journal of Non-Newtonian Fluid Mechanics, 33 (1989), No. 3, 257–287. [CrossRef] [Google Scholar]
  10. O. Eytan, D. Elad. Analysis of intra-uterine fluid motion induced by uterine contractions. Bull. Math. Biol., 61 (1999), No. 2, 221–238. [CrossRef] [PubMed] [Google Scholar]
  11. O. Eytan, A.J. Jaffa, J. Har-Toov, E. Dalach, D. Elad. Dynamics of the intrauterine fluid-wall interface. Ann. Biomed. Engr., 27 (1999) No. 3, 372-9. [CrossRef] [Google Scholar]
  12. L. Fauci. Peristaltic pumping of solid particles. Comp. & Fluids, 21 (1992), No. 4, 583–598. [CrossRef] [Google Scholar]
  13. L. Fauci, R. Dillon. Biofluidmechanics of reproduction. Annu. Rev. Fluid. Mech., 38 (2006), No. 1, 371–394. [CrossRef] [Google Scholar]
  14. B.E. Griffith, C.S. Peskin. On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems. Journal of Computational Physics, 208 (2005), No. 1, 75–105. [CrossRef] [MathSciNet] [Google Scholar]
  15. R. Guy, A. Fogelson. A wave propagation algorithm for viscoelastic fluids with spatially and temporally varying properties. Comput. Methods Appl. Mech. Engr., 197 (2008), No. 1, 2250–2264. [CrossRef] [Google Scholar]
  16. F. H. Harlow, J. E. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. of Fluids, 8 (1965), No. 12, 2182–2189. [NASA ADS] [CrossRef] [Google Scholar]
  17. E. J. Hinch. Uncoiling a polymer molecule in a strong extensional flow. Journal of Non-Newtonian Fluid Mechanics, 54 (1994), No. C, 209–230. [CrossRef] [Google Scholar]
  18. T.K. Hung, T.D. Brown. Solid-particle motion in two-dimensional peristaltic flows. J. Fluid Mech, 73 (1976), No. 1,77–96. [CrossRef] [Google Scholar]
  19. M. Y. Jaffrin and A. H. Shapiro. Peristaltic pumping. Annu. Rev. Fluid Mech., 3 (1971), No. 1, 13–37. [CrossRef] [Google Scholar]
  20. M. Y. Jaffrin, A. H. Shapiro, S. L. Weinberg. Peristaltic pumping with long wavelengths at low reynolds number. J. Fluid Mech., 37 (1969), No. 4, 799–825. [CrossRef] [Google Scholar]
  21. J. Jimenez-Lozano, M. Sen, P. Dunn. Particle motion in unsteady two-dimensional peristaltic flow with application to the ureter. Phys. Rev. E, 79 (2009), No. 4, 041901. [CrossRef] [Google Scholar]
  22. J. Kim, P. Moin. Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comp. Physics, 59 (1985), No. 2, 308–323. [CrossRef] [MathSciNet] [Google Scholar]
  23. G. Kunz, D. Beil, H. Deiniger, A. Einspanier, G. Mall, G. Leyendecker. The uterine peristaltic pump. normal and impeded sperm transport within the female genital tract. Adv. Exp. Med. Biol., 424 (1997), No. 1, 267–277. [CrossRef] [PubMed] [Google Scholar]
  24. R.G. Larson. The Structure and Rheology of Complex Fluids. Oxford University Press, 1998. [Google Scholar]
  25. M. Li, J. Brasseur. Non-steady peristaltic transport in finite-length tubes. J. Fluid Mech., 248 (1993), No. 1, 129–151. [CrossRef] [Google Scholar]
  26. C.Y. Lu, P.D. Olmsted, R.C. Ball. Effects of nonlocal stress on the determination of shear banding flow. Phys. Rev. Lett., 84 (2000), No. 4, 642–645. [CrossRef] [PubMed] [Google Scholar]
  27. C.S. Peskin. The immersed boundary method. Acta Numerica, 11 (2002), 479–517. [CrossRef] [MathSciNet] [Google Scholar]
  28. C. Pozrikidis. A study of peristaltic flow. J. Fluid Mech. 180 (1987), 180:515. [Google Scholar]
  29. J.M. Rallison. Dissipative stresses in dilute polymer solutions. Journal of Non-Newtonian Fluid Mechanics, 68 (1997), No. 1, 61–83. [CrossRef] [Google Scholar]
  30. S. Takabatake, K. Ayukawa, A. Mori. Peristaltic pumping in circular cylindrical tubes: a numerical study of fluid transport and its efficiency. J. Fluid Mech., 194 (1988), 193:267. [Google Scholar]
  31. J. Teran, L. Fauci, M. Shelley. Peristaltic pumping and irreversibility of a Stokesian viscoelastic fluid. Phys. of Fluids, 20 (2008), No. 7, 073101. [CrossRef] [Google Scholar]
  32. J. Teran, L. Fauci, M. Shelley. Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Letters, 104 (2010), No. 3, 038101. [CrossRef] [Google Scholar]
  33. B. Thomases, M. Shelley. Transition to mixing and oscillations in a Stokesian viscoelastic flow. Phys. Rev. Lett., 103 (2009), No. 9, 094501. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.