Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 5, 2011
Complex Fluids
Page(s) 67 - 83
Published online 10 August 2011
  1. J. Baranger, A. Machmoum. Existence of approximate solutions and error bounds for viscoelastic fluid flow: characteristics method. Comput. Methods Appl. Mech. Engrg. , 148 (1997), No. 1-2, 39–52. [CrossRef] [MathSciNet]
  2. J. Baranger, D. Sandri. Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds. I. Discontinuous constraints. Numer. Math., 63 (1992), No. 1, 13–27. [CrossRef] [MathSciNet]
  3. R.B. Bird, R.C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids. Wiley-Interscience, 1987.
  4. J.R. Blake, P.G. Vann, H Winet. A model of ovum transport. J. Theor. Biol., 102 (1983), No. 1, 145–166. [CrossRef] [PubMed]
  5. S. Boyarski, C. Gottschalk, E. Tanagho, P. Zimskind. Urodynamics: Hydrodynamics of the Ureter and the Renal Pelvis. Academic Press, New York, 1971.
  6. A. Brooks, T. Hughes. Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32 (1982), No. (1-3), 199–259. [CrossRef] [MathSciNet]
  7. J.C. Chrispell, V.J. Ervin, E.W. Jenkins. A fractional step [theta]-method approximation of time-dependent viscoelastic fluid flow. Journal of Computational and Applied Mathematics, 232 (2009), No. 2, 159–175. [CrossRef] [MathSciNet]
  8. K. Connington, Q. Kang, H. Viswanathan, A. Abdel-Fattah, S. Chen. Peristaltic particle transport using the lattice boltzmann method. Phys. of Fluids, 21 (2009), No. 5, 053301. [CrossRef]
  9. A.W. El-Kareh, L.G. Leal. Existence of solutions for all deborah numbers for a non-Newtonian model modified to include diffusion. Journal of Non-Newtonian Fluid Mechanics, 33 (1989), No. 3, 257–287. [CrossRef]
  10. O. Eytan, D. Elad. Analysis of intra-uterine fluid motion induced by uterine contractions. Bull. Math. Biol., 61 (1999), No. 2, 221–238. [CrossRef] [PubMed]
  11. O. Eytan, A.J. Jaffa, J. Har-Toov, E. Dalach, D. Elad. Dynamics of the intrauterine fluid-wall interface. Ann. Biomed. Engr., 27 (1999) No. 3, 372-9. [CrossRef]
  12. L. Fauci. Peristaltic pumping of solid particles. Comp. & Fluids, 21 (1992), No. 4, 583–598. [CrossRef]
  13. L. Fauci, R. Dillon. Biofluidmechanics of reproduction. Annu. Rev. Fluid. Mech., 38 (2006), No. 1, 371–394. [CrossRef]
  14. B.E. Griffith, C.S. Peskin. On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems. Journal of Computational Physics, 208 (2005), No. 1, 75–105. [CrossRef] [MathSciNet]
  15. R. Guy, A. Fogelson. A wave propagation algorithm for viscoelastic fluids with spatially and temporally varying properties. Comput. Methods Appl. Mech. Engr., 197 (2008), No. 1, 2250–2264. [CrossRef]
  16. F. H. Harlow, J. E. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. of Fluids, 8 (1965), No. 12, 2182–2189. [NASA ADS] [CrossRef]
  17. E. J. Hinch. Uncoiling a polymer molecule in a strong extensional flow. Journal of Non-Newtonian Fluid Mechanics, 54 (1994), No. C, 209–230. [CrossRef]
  18. T.K. Hung, T.D. Brown. Solid-particle motion in two-dimensional peristaltic flows. J. Fluid Mech, 73 (1976), No. 1,77–96. [CrossRef]
  19. M. Y. Jaffrin and A. H. Shapiro. Peristaltic pumping. Annu. Rev. Fluid Mech., 3 (1971), No. 1, 13–37. [CrossRef]
  20. M. Y. Jaffrin, A. H. Shapiro, S. L. Weinberg. Peristaltic pumping with long wavelengths at low reynolds number. J. Fluid Mech., 37 (1969), No. 4, 799–825. [CrossRef]
  21. J. Jimenez-Lozano, M. Sen, P. Dunn. Particle motion in unsteady two-dimensional peristaltic flow with application to the ureter. Phys. Rev. E, 79 (2009), No. 4, 041901. [CrossRef]
  22. J. Kim, P. Moin. Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comp. Physics, 59 (1985), No. 2, 308–323. [CrossRef] [MathSciNet]
  23. G. Kunz, D. Beil, H. Deiniger, A. Einspanier, G. Mall, G. Leyendecker. The uterine peristaltic pump. normal and impeded sperm transport within the female genital tract. Adv. Exp. Med. Biol., 424 (1997), No. 1, 267–277. [CrossRef] [PubMed]
  24. R.G. Larson. The Structure and Rheology of Complex Fluids. Oxford University Press, 1998.
  25. M. Li, J. Brasseur. Non-steady peristaltic transport in finite-length tubes. J. Fluid Mech., 248 (1993), No. 1, 129–151. [CrossRef]
  26. C.Y. Lu, P.D. Olmsted, R.C. Ball. Effects of nonlocal stress on the determination of shear banding flow. Phys. Rev. Lett., 84 (2000), No. 4, 642–645. [CrossRef] [PubMed]
  27. C.S. Peskin. The immersed boundary method. Acta Numerica, 11 (2002), 479–517. [CrossRef] [MathSciNet]
  28. C. Pozrikidis. A study of peristaltic flow. J. Fluid Mech. 180 (1987), 180:515.
  29. J.M. Rallison. Dissipative stresses in dilute polymer solutions. Journal of Non-Newtonian Fluid Mechanics, 68 (1997), No. 1, 61–83. [CrossRef]
  30. S. Takabatake, K. Ayukawa, A. Mori. Peristaltic pumping in circular cylindrical tubes: a numerical study of fluid transport and its efficiency. J. Fluid Mech., 194 (1988), 193:267.
  31. J. Teran, L. Fauci, M. Shelley. Peristaltic pumping and irreversibility of a Stokesian viscoelastic fluid. Phys. of Fluids, 20 (2008), No. 7, 073101. [CrossRef]
  32. J. Teran, L. Fauci, M. Shelley. Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Letters, 104 (2010), No. 3, 038101. [CrossRef]
  33. B. Thomases, M. Shelley. Transition to mixing and oscillations in a Stokesian viscoelastic flow. Phys. Rev. Lett., 103 (2009), No. 9, 094501. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.