Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 5, 2011
Complex Fluids
Page(s) 44 - 66
DOI https://doi.org/10.1051/mmnp/20116503
Published online 10 August 2011
  1. N. R. Amundson, A. Caboussat, J. W. He, C. Landry, J. H. Seinfeld. A dynamic optimization problem related to organic aerosols. C. R. Acad. Sci., 344 (2007), No. 8, 519–522.
  2. N. R. Amundson, A. Caboussat, J. W. He, C. Landry, C. Tong, J. H. Seinfeld. A new atmospheric aerosol phase equilibrium model (UHAERO): organic systems. Atmos. Chem. Phys., 7 (2007), 4675–4698. [CrossRef]
  3. N. R. Amundson, A. Caboussat, J. W. He, A. V. Martynenko, J. H. Seinfeld, K. Y. Yoo. A new inorganic atmospheric aerosol phase equilibrium model (UHAERO). Atmos. Chem. Phys., 6 (2006), 975–992. [CrossRef]
  4. N. R. Amundson, A. Caboussat, J. W. He, J. H. Seinfeld. Primal-dual interior-point algorithm for chemical equilibrium problems related to modeling of atmospheric organic aerosols. J. Optim. Theory Appl., 130 (2006), No. 3, 375–407. [MathSciNet]
  5. H. Y. Benson, D. F. Shanno. Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts. Comput. Optim. Appl., 40 (2008), No. 2, 143–189. [CrossRef] [MathSciNet]
  6. A. Caboussat. Primal-dual interior-point method for thermodynamic gas-particle partitioning. Computational Optimization and Applications, 48 (2011), No. 3, 717–745. [CrossRef] [MathSciNet]
  7. A. Caboussat, R. Glowinski. A numerical method for a non-smooth advection-diffusion problem arising in sand mechanics. Com. Pure. Appl. Anal, 8 (2008), No. 1, 161–178. [CrossRef]
  8. A. Caboussat, R. Glowinski, V. Pons. An augmented Lagrangian approach to the numerical solution of a non-smooth eigenvalue problem. J. Numer. Math, 17 (2009), No. 1, 3–26. [CrossRef] [MathSciNet]
  9. A. Caboussat, C. Landry, J. Rappaz. Optimization problem coupled with differential equations: A numerical algorithm mixing an interior-point method and event detection. J. Optim. Theory Appl., 147 (2010), No. 1, 141–156. [CrossRef] [MathSciNet]
  10. G. R. Carmichael, L. K. Peters, T. Kitada. A second generation model for the regional-scale transport/chemistry/deposition. Atm. Env., 20 (1986), 173. [CrossRef]
  11. E. J. Dean, R. Glowinski. An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. Electronic Transactions in Numerical Analysis, 22 (2006), 71–96.
  12. E. J. Dean, R. Glowinski, G. Guidoboni. On the numerical simulation of Bingham visco-plastic flow: old and new results. Journal of Non Newtonian Fluid Mechanics, 142 (2007), 36–62. [CrossRef]
  13. A. V. Fiacco, G. P. McCormick. Nonlinear programming : sequential unconstrained minimization techniques, Wiley, New York, 1968.
  14. M. Fortin, R. Glowinski. Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, Studies in Mathematics and Its Applications. Elsevier Science Ltd, 1983.
  15. R. Glowinski. Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, NY, 1984.
  16. R. Glowinski, P. Le Tallec. Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.
  17. J. Gondzio, A. Grothey. A new unblocking technique to warmstart interior point methods based on sensitivity analysis. SIAM Journal on Optimization, 19 (2008), No. 3, 1184–1210. [CrossRef] [MathSciNet]
  18. M. Z. Jacobson. Fundamentals of Atmospheric Modeling, Cambridge, second edition, 2005.
  19. C. Landry. Numerical Analysis of Optimization-Constrained Differential Equations: Applications to Atmospheric Chemistry. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2009. Available at http://library.epfl.ch/theses/?nr=4345.
  20. C. Landry, A. Caboussat, E. Hairer. Solving optimization-constrained differential equations with discontinuity points, with application to atmospheric chemistry. SIAM J. Sci. Comp., 31 (2009), No. 5, 3806–3826. [CrossRef]
  21. D. Lanser, J. Verwer. Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling. J. Comput. Appl. Math., 111 (1999), 201–216. [CrossRef] [MathSciNet]
  22. C. M. McDonald, C. A. Floudas. GLOPEQ: A new computational tool for the phase and chemical equilibrium problem. Computers and Chemical Engineering, 21 (1996), No. 1, 1–23. [CrossRef]
  23. G. J. McRae, W. R. Goodin, J. H. Seinfeld. Numerical solution of the atmospheric diffusion equation for chemically reacting flows. J. Comput. Phys., 45 (1982), No. 1, 1–42. [CrossRef] [MathSciNet]
  24. Z. Meng, D. Dabdub, J. H. Seinfeld. Size-resolved and chemically resolved model of atmospheric aerosol dynamics. J. Geophys. Res., 103 (1998), 3419–3436. [CrossRef]
  25. K. Nguyen, A. Caboussat, D. Dabdub. Mass conservative, positive definite integrator for atmospheric chemical dynamics. Atmos. Env., 43 (2009), No. 40, 6287–6295. [CrossRef]
  26. K. Nguyen, D. Dabdub. Semi-lagrangian flux scheme for the solution of the aerosol condensation/evaporation equation. Aerosol Science & Technology, 36 (2002), 407–418. [CrossRef]
  27. R. T. Rockafellar. Convex analysis, Princeton University Press, Princeton, NJ, 1970.
  28. J. H. Seinfeld, S. N. Pandis. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998.
  29. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller, editors. Intergovernmental Panel on Climate Change: Fourth Assessment Report: Climate Change 2007, The Physical Science Basis, Cambridge University Press, 2007.
  30. B. Sportisse. A review of current issues in air pollution modeling and simulation. Comput. Geosci., 11 (2007), 159–181. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  31. J.G. Verwer, W. Hundsdorfer, J.G. Blom. Numerical time integration for air pollution models. Surveys Math. Ind., 10 (2002), 107–174.
  32. R. A. Zaveri, R. C. Easter, J. D. Fast, L. K. Peters. Model for simulating aerosol interactions and chemistry (MOSAIC). J. Geophys. Res. D (Atmospheres), 113 (2008), No. D13, D13204. [CrossRef]
  33. R. A. Zaveri, R. C. Easter, L. K. Peters. A computationally efficient multicomponent equilibrium solver for aerosols (MESA). J. Geophys. Res. D (Atmospheres), 110 (2005), No. D24, D24203. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.