Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 5, 2011
Complex Fluids
Page(s) 44 - 66
DOI https://doi.org/10.1051/mmnp/20116503
Published online 10 August 2011
  1. N. R. Amundson, A. Caboussat, J. W. He, C. Landry, J. H. Seinfeld. A dynamic optimization problem related to organic aerosols. C. R. Acad. Sci., 344 (2007), No. 8, 519–522. [Google Scholar]
  2. N. R. Amundson, A. Caboussat, J. W. He, C. Landry, C. Tong, J. H. Seinfeld. A new atmospheric aerosol phase equilibrium model (UHAERO): organic systems. Atmos. Chem. Phys., 7 (2007), 4675–4698. [CrossRef] [Google Scholar]
  3. N. R. Amundson, A. Caboussat, J. W. He, A. V. Martynenko, J. H. Seinfeld, K. Y. Yoo. A new inorganic atmospheric aerosol phase equilibrium model (UHAERO). Atmos. Chem. Phys., 6 (2006), 975–992. [CrossRef] [Google Scholar]
  4. N. R. Amundson, A. Caboussat, J. W. He, J. H. Seinfeld. Primal-dual interior-point algorithm for chemical equilibrium problems related to modeling of atmospheric organic aerosols. J. Optim. Theory Appl., 130 (2006), No. 3, 375–407. [MathSciNet] [Google Scholar]
  5. H. Y. Benson, D. F. Shanno. Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts. Comput. Optim. Appl., 40 (2008), No. 2, 143–189. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Caboussat. Primal-dual interior-point method for thermodynamic gas-particle partitioning. Computational Optimization and Applications, 48 (2011), No. 3, 717–745. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Caboussat, R. Glowinski. A numerical method for a non-smooth advection-diffusion problem arising in sand mechanics. Com. Pure. Appl. Anal, 8 (2008), No. 1, 161–178. [CrossRef] [Google Scholar]
  8. A. Caboussat, R. Glowinski, V. Pons. An augmented Lagrangian approach to the numerical solution of a non-smooth eigenvalue problem. J. Numer. Math, 17 (2009), No. 1, 3–26. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Caboussat, C. Landry, J. Rappaz. Optimization problem coupled with differential equations: A numerical algorithm mixing an interior-point method and event detection. J. Optim. Theory Appl., 147 (2010), No. 1, 141–156. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. R. Carmichael, L. K. Peters, T. Kitada. A second generation model for the regional-scale transport/chemistry/deposition. Atm. Env., 20 (1986), 173. [CrossRef] [Google Scholar]
  11. E. J. Dean, R. Glowinski. An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. Electronic Transactions in Numerical Analysis, 22 (2006), 71–96. [Google Scholar]
  12. E. J. Dean, R. Glowinski, G. Guidoboni. On the numerical simulation of Bingham visco-plastic flow: old and new results. Journal of Non Newtonian Fluid Mechanics, 142 (2007), 36–62. [CrossRef] [Google Scholar]
  13. A. V. Fiacco, G. P. McCormick. Nonlinear programming : sequential unconstrained minimization techniques, Wiley, New York, 1968. [Google Scholar]
  14. M. Fortin, R. Glowinski. Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, Studies in Mathematics and Its Applications. Elsevier Science Ltd, 1983. [Google Scholar]
  15. R. Glowinski. Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, NY, 1984. [Google Scholar]
  16. R. Glowinski, P. Le Tallec. Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989. [Google Scholar]
  17. J. Gondzio, A. Grothey. A new unblocking technique to warmstart interior point methods based on sensitivity analysis. SIAM Journal on Optimization, 19 (2008), No. 3, 1184–1210. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Z. Jacobson. Fundamentals of Atmospheric Modeling, Cambridge, second edition, 2005. [Google Scholar]
  19. C. Landry. Numerical Analysis of Optimization-Constrained Differential Equations: Applications to Atmospheric Chemistry. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2009. Available at http://library.epfl.ch/theses/?nr=4345. [Google Scholar]
  20. C. Landry, A. Caboussat, E. Hairer. Solving optimization-constrained differential equations with discontinuity points, with application to atmospheric chemistry. SIAM J. Sci. Comp., 31 (2009), No. 5, 3806–3826. [CrossRef] [Google Scholar]
  21. D. Lanser, J. Verwer. Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling. J. Comput. Appl. Math., 111 (1999), 201–216. [CrossRef] [MathSciNet] [Google Scholar]
  22. C. M. McDonald, C. A. Floudas. GLOPEQ: A new computational tool for the phase and chemical equilibrium problem. Computers and Chemical Engineering, 21 (1996), No. 1, 1–23. [CrossRef] [Google Scholar]
  23. G. J. McRae, W. R. Goodin, J. H. Seinfeld. Numerical solution of the atmospheric diffusion equation for chemically reacting flows. J. Comput. Phys., 45 (1982), No. 1, 1–42. [CrossRef] [MathSciNet] [Google Scholar]
  24. Z. Meng, D. Dabdub, J. H. Seinfeld. Size-resolved and chemically resolved model of atmospheric aerosol dynamics. J. Geophys. Res., 103 (1998), 3419–3436. [CrossRef] [Google Scholar]
  25. K. Nguyen, A. Caboussat, D. Dabdub. Mass conservative, positive definite integrator for atmospheric chemical dynamics. Atmos. Env., 43 (2009), No. 40, 6287–6295. [CrossRef] [Google Scholar]
  26. K. Nguyen, D. Dabdub. Semi-lagrangian flux scheme for the solution of the aerosol condensation/evaporation equation. Aerosol Science & Technology, 36 (2002), 407–418. [CrossRef] [Google Scholar]
  27. R. T. Rockafellar. Convex analysis, Princeton University Press, Princeton, NJ, 1970. [Google Scholar]
  28. J. H. Seinfeld, S. N. Pandis. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998. [Google Scholar]
  29. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller, editors. Intergovernmental Panel on Climate Change: Fourth Assessment Report: Climate Change 2007, The Physical Science Basis, Cambridge University Press, 2007. [Google Scholar]
  30. B. Sportisse. A review of current issues in air pollution modeling and simulation. Comput. Geosci., 11 (2007), 159–181. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  31. J.G. Verwer, W. Hundsdorfer, J.G. Blom. Numerical time integration for air pollution models. Surveys Math. Ind., 10 (2002), 107–174. [Google Scholar]
  32. R. A. Zaveri, R. C. Easter, J. D. Fast, L. K. Peters. Model for simulating aerosol interactions and chemistry (MOSAIC). J. Geophys. Res. D (Atmospheres), 113 (2008), No. D13, D13204. [CrossRef] [Google Scholar]
  33. R. A. Zaveri, R. C. Easter, L. K. Peters. A computationally efficient multicomponent equilibrium solver for aerosols (MESA). J. Geophys. Res. D (Atmospheres), 110 (2005), No. D24, D24203. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.