Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 5, 2011
Complex Fluids
Page(s) 25 - 43
DOI https://doi.org/10.1051/mmnp/20116502
Published online 10 August 2011
  1. R.A. Adams, J.J.F. Fournier. Sobolev spaces. Pure and Applied Mathematics, second edition, Amsterdam, 2003. [Google Scholar]
  2. E. Bänsch. Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer. Math., 88 (2001), No. 2, 203–235. [CrossRef] [MathSciNet] [Google Scholar]
  3. E. Bänsch, P. Morin, R.H. Nochetto. A finite element method for surface diffusion: the parametric case. J. Comput. Phys., 203 (2005), No. 1, 321–343. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.W. Barrett, H. Garcke, R. Nürnberg. Parametric approximation of Willmore flow and related geometric evolution equations. SIAM J. Sci. Comput., 31 (2008), No. 1, 225–253. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Bonito, R. H. Nochetto, M. S. Pauletti. Geometrically consistent mesh modification. SIAM J. Numer. Anal., 48 (2010), No. 5, 1877–1899. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Bonito, R.H. Nochetto, M.S. Pauletti. Parametric fem for geometric biomembranes. J. Comput. Phys., 229 (2010), No. 9, 3171–3188. [CrossRef] [MathSciNet] [Google Scholar]
  7. P.B. Canham. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. Journal of Theoretical Biology, 26 (1970), No. 1, 61–81. [CrossRef] [PubMed] [Google Scholar]
  8. P.G. Ciarlet, J.-L. Lions, editors. Finite element methods. Part 1. Handbook of numerical analysis, 2, North-Holland, Amsterdam, 1991. [Google Scholar]
  9. U. Clarenz, U. Diewald, G. Dziuk, M. Rumpf, R. Rusu. A finite element method for surface restoration with smooth boundary conditions. Comput. Aided Geom. Design, 21 (2004), No. 5, 427–445. [MathSciNet] [Google Scholar]
  10. T.A. Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Software, 30 (2004), No. 2, 196–199. [CrossRef] [MathSciNet] [Google Scholar]
  11. K. Deckelnick, G. Dziuk. Error analysis of a finite element method for the Willmore flow of graphs. Interfaces Free Bound., 8 (2006), No. 1, 21–46. [CrossRef] [MathSciNet] [Google Scholar]
  12. K. Deckelnick, G. Dziuk, C.M. Elliott. Computation of geometric partial differential equations and mean curvature flow. Acta Numer., 14 (2005), 139–232. [CrossRef] [MathSciNet] [Google Scholar]
  13. M.C. Delfour, J.-P. Zolésio. Shapes and geometries. Advances in Design and Control, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001. [Google Scholar]
  14. A. Demlow. Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal., 47 (2009), No. 2, 805–827. [CrossRef] [MathSciNet] [Google Scholar]
  15. G. Doǧan, P. Morin, R.H. Nochetto, M. Verani. Discrete gradient flows for shape optimization and applications. Comput. Methods Appl. Mech. Engrg., 196 (2007), No. 37-40, 3898–3914. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Droske, M. Rumpf. A level set formulation for Willmore flow. Interfaces Free Bound., 6 (2004), No. 3, 361–378. [CrossRef] [MathSciNet] [Google Scholar]
  17. Q. Du, C. Liu, X. Wang. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys., 198 (2004), No. 2, 450–468. [CrossRef] [MathSciNet] [Google Scholar]
  18. Q. Du, C. Liu, X. Wang. Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys., 212 (2006), No. 2, 757–777. [CrossRef] [MathSciNet] [Google Scholar]
  19. Q. Du, Ch. Liu, R. Ryham, X. Wang. Energetic variational approaches in modeling vesicle and fluid interactions. Physica D, 238 (2009), No. 9-10, 923–930. [CrossRef] [MathSciNet] [Google Scholar]
  20. G. Dziuk. An algorithm for evolutionary surfaces. Numer. Math., 58 (1991), No. 6, 603–611. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Dziuk. Computational parametric willmore flow. Numer. Math., 111 (2008), No. 1, 55–80. [CrossRef] [MathSciNet] [Google Scholar]
  22. S. Esedoglu, S.J. Ruuth, R. Tsai. Threshold dynamics for high order geometric motions. Interfaces Free Bound., 10 (2008), No. 3, 263–282. [CrossRef] [MathSciNet] [Google Scholar]
  23. E.A. Evans, R. Skalak. Mechanics and thermodynamics of biomembranes .2. CRC Critical reviews in bioengineering, 3 (1979), No. 4, 331–418. [PubMed] [Google Scholar]
  24. M. Giaquinta, S. Hildebrandt. Calculus of variations. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 310, Springer-Verlag, Berlin, 1996. [Google Scholar]
  25. W. Helfrich. Elastic properties of lipid bilayers - theory and possible experiments. Zeitschrift Fur Naturforschung C-A Journal Of Biosciences, 28 (1973), 693. [Google Scholar]
  26. D. Hu, P. Zhang, W. E. Continuum theory of a moving membrane. Phys. Rev. E (3), 75 (2007), No. 4, 11. [Google Scholar]
  27. J.T. Jenkins. The equations of mechanical equilibrium of a model membrane. SIAM J. Appl. Math., 32 (1977), No. 4, 755–764. [CrossRef] [MathSciNet] [Google Scholar]
  28. D. Köster, O. Kriessl, K.G. Siebert. Design of finite element tools for coupled surface and volume meshes. Numer. Math. Theor. Meth. Appl., 1 (2008), No. 3, 245–274. [Google Scholar]
  29. W. Losert. Personal communication, 2009. [Google Scholar]
  30. M.S. Pauletti. Parametric AFEM for geometric evolution equation and coupled fluid-membrane interaction. Thesis (Ph.D.)–University of Maryland, College Park, 2008. [Google Scholar]
  31. R.E. Rusu. An algorithm for the elastic flow of surfaces. Interfaces Free Bound., 7 (2005), No. 3, 229–239. [CrossRef] [MathSciNet] [Google Scholar]
  32. A. Schmidt, K.G. Siebert. Design of adaptive finite element software: The finite element toolbox ALBERTA, Lecture Notes in Computational Science and Engineering, 42, Springer-Verlag, Berlin, 2005. [Google Scholar]
  33. U. Seifert. Configurations of fluid membranes and vesicles. Advances in Physics, 46 (1997), No. 1, 13–137. [CrossRef] [Google Scholar]
  34. D.J. Steigmann. Fluid films with curvature elasticity. Arch. Ration. Mech. Anal., 150 (1999), No. 2, 127–152. [CrossRef] [MathSciNet] [Google Scholar]
  35. D.J. Steigmann, E. Baesu, R.E. Rudd, J. Belak, M. McElfresh. On the variational theory of cell-membrane equilibria. Interfaces Free Bound., 5 (2003), No. 4, 357–366. [CrossRef] [MathSciNet] [Google Scholar]
  36. R. Temam. Navier-Stokes equations. Theory and numerical analysis. North-Holland Publishing Co., Amsterdam, 1977. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.