Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 6, 2011
Biomathematics Education
Page(s) 245 - 259
Section Continuous Modeling
DOI https://doi.org/10.1051/mmnp/20116613
Published online 05 October 2011
  1. M. Allarakhia, A. Wensley. Systems biology: melting the boundaries in drug discovery research. Technology Management: A Unifying Discipline for Melting the Boundaries, (2005), 262–274. [CrossRef] [Google Scholar]
  2. L. Allen. An Introduction to mathematical biology, Pearson, New York, 2007. [Google Scholar]
  3. S. Bauer, Z. Barta, B. Ens, G. Hays, J. McNamara, M. Klassen. Animal migration: linking models and data beyond taxonomic limits. Biol. Lett., 5 (2009), No. 4, 433–435. [CrossRef] [PubMed] [Google Scholar]
  4. R. Baxter. Environmental effects of dams and impoundments. Ann. Rev. Ecol. Syst., 8 (1977), 255–93. [Google Scholar]
  5. W. Bialek, D. Botstein. Introductory science and mathematics education for the 21th century biologists. Science, 303 (2004), 788–790. [CrossRef] [PubMed] [Google Scholar]
  6. J. Bower. Looking for Newton: realistic modeling in modern biology. Brains, Minds and Media, 1 (2005), bmm217 (urn:nbn:de:0009-3-2177). [Google Scholar]
  7. V. Buonaccorsi, A. Skibiel. A striking demonstration of the Poisson distribution. Teach. Stat, 27 (2005), 8-10. [CrossRef] [Google Scholar]
  8. C. Cobelli. Modeling and identification of endocrine-metabolic systems. Theoretical aspects and their importance in practice. Math. Biosci., 72 (1984), 263–289. [CrossRef] [Google Scholar]
  9. J. Cohen. Mathematics Is Biology’s Next Microscope, Only Better; Biology Is Mathematics’ Next Physics, Only Better. PLoS Biol., 2 (2004), e439. Published online 2004 December 14. doi: 10.1371/journal.pbio.0020439. [Google Scholar]
  10. J. Crow and M. Kimura. An Introduction to Population Genetics Theory. Harper & Row, New York, 1970. [Google Scholar]
  11. M. Evans, N. Hastings, B. Peacock. Erlang distribution. Ch. 12 in Statistical Distributions, 3rd ed., Wiley, New York, 2000, 71–73. [Google Scholar]
  12. A. Ford. Modeling the environment. Island Press, 2010. [Google Scholar]
  13. W. Granta, J. Matisb, and T. Millerb. A Stochastic Compartmental Model for Migration of Marine Shrimp. Ecological Modeling, 54 (1991), 1–15. [CrossRef] [Google Scholar]
  14. L. Gross. Quantitative training for life science students. BioScience, 44 (1994), 59. [CrossRef] [Google Scholar]
  15. P. Higgs. Frequency distributions in population genetics parallel those in statistical physics. Physical Review E, (1995), No. 51, 95–101. [CrossRef] [Google Scholar]
  16. W. Hwang, Y. Cho, A. Zhang, M. Ramanathan. A novel functional module detection algorithm for protein-protein interaction networks. Algorithms for Molecular Biology (2006), No. 2, 24, doi:10.1186/1748-7188-1-24. [Google Scholar]
  17. J. Jacquez. Compartmental Analysis in Biology and Medicine, 3rd ed., Biomedware, Ann Arbor, MI, 1996. [Google Scholar]
  18. I. Karsai, G. Kampis. The crossroad between biology and mathematics: Scientific method as the basics of scientific literacy. BioScience, 60 (2010), 632–638. [CrossRef] [Google Scholar]
  19. J. Knisley. Netlogo Migration Simulations, http://math.etsu.edu/symbiosis/migrations, (2011). [Google Scholar]
  20. J. Knisley, I. Karsai, A. Godbole, M. Helfgott, K. Joplin, E. Seier, D. Moore, H. Miller. Storytelling in the Symbiosis Project. To appear in Undergraduate Mathematics for the Life Sciences: Processes, Models, Assessment, and Directions, MAA Lecture Notes, 2010. [Google Scholar]
  21. J. Knisley. A 4-Stage Model of Mathematical Learning. The Mathematics Educator, 12 (2002), No. 1, 11–16. [Google Scholar]
  22. D. Lauffenburger. Receptors. Oxford University Press, Oxford, 1993. [Google Scholar]
  23. M. Malice, C. Lefevre. On Linear Stochastic Compartmental Models in Discrete Time. Bulletin of Mathematical Biology, 47 (1985), No. 2, 287–293. [CrossRef] [MathSciNet] [Google Scholar]
  24. D. Moore, M. Helfgott, A. Godbole, K. Joplin, I. Karsai, J. Knisley, H. Miller, E. Seier. Creating Quantitative Biologists: The Immediate Future of SYMBIOSIS. To appear in Undergraduate Mathematics for the Life Sciences: Processes, Models, Assessment, and Directions, MAA Lecture Notes, 2010. [Google Scholar]
  25. J. Murray. Mathematical Biology. Springer, New York, 1989. [Google Scholar]
  26. W. Reed, B. Hughes. Theoretical size distribution of fossil taxa: analysis of a null model. Theoretical Biology and Medical Modeling, 4 (2007), 12, doi:10.1186/1742-4682-4-12 [CrossRef] [Google Scholar]
  27. L. Steen, ed. Math & Bio 2010: Linking Undergraduate Disciplines. Mathematical Association of America, Washington, DC, 2005. [Google Scholar]
  28. D. Usher, T. Driscoll, P. Dhurjati, J. Pelesko, L. Rossi, G. Schleiniger, K. Pusecker, H. White. A transformative model for undergraduate quantitative biology education. CBE Life Sci Educ., 9 (2010), No. 3, 181–188. [CrossRef] [PubMed] [Google Scholar]
  29. D. Welch, E. Rechisky, M. Melnychuk, A. Porter, C. Walters. Survival of Migrating Salmon Smolts in Large Rivers With and Without Dams. PLoS Biol, 6 (2008), No. 10, e265. doi:10.1371/journal.pbio.0060265. [CrossRef] [PubMed] [Google Scholar]
  30. U. Wilensky. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL, (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.