Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 6, 2011
Biomathematics Education
Page(s) 245 - 259
Section Continuous Modeling
DOI https://doi.org/10.1051/mmnp/20116613
Published online 05 October 2011
  1. M. Allarakhia, A. Wensley. Systems biology: melting the boundaries in drug discovery research. Technology Management: A Unifying Discipline for Melting the Boundaries, (2005), 262–274. [CrossRef]
  2. L. Allen. An Introduction to mathematical biology, Pearson, New York, 2007.
  3. S. Bauer, Z. Barta, B. Ens, G. Hays, J. McNamara, M. Klassen. Animal migration: linking models and data beyond taxonomic limits. Biol. Lett., 5 (2009), No. 4, 433–435. [CrossRef] [PubMed]
  4. R. Baxter. Environmental effects of dams and impoundments. Ann. Rev. Ecol. Syst., 8 (1977), 255–93. [CrossRef]
  5. W. Bialek, D. Botstein. Introductory science and mathematics education for the 21th century biologists. Science, 303 (2004), 788–790. [CrossRef] [PubMed]
  6. J. Bower. Looking for Newton: realistic modeling in modern biology. Brains, Minds and Media, 1 (2005), bmm217 (urn:nbn:de:0009-3-2177).
  7. V. Buonaccorsi, A. Skibiel. A striking demonstration of the Poisson distribution. Teach. Stat, 27 (2005), 8-10. [CrossRef]
  8. C. Cobelli. Modeling and identification of endocrine-metabolic systems. Theoretical aspects and their importance in practice. Math. Biosci., 72 (1984), 263–289. [CrossRef]
  9. J. Cohen. Mathematics Is Biology’s Next Microscope, Only Better; Biology Is Mathematics’ Next Physics, Only Better. PLoS Biol., 2 (2004), e439. Published online 2004 December 14. doi: 10.1371/journal.pbio.0020439.
  10. J. Crow and M. Kimura. An Introduction to Population Genetics Theory. Harper & Row, New York, 1970.
  11. M. Evans, N. Hastings, B. Peacock. Erlang distribution. Ch. 12 in Statistical Distributions, 3rd ed., Wiley, New York, 2000, 71–73.
  12. A. Ford. Modeling the environment. Island Press, 2010.
  13. W. Granta, J. Matisb, and T. Millerb. A Stochastic Compartmental Model for Migration of Marine Shrimp. Ecological Modeling, 54 (1991), 1–15. [CrossRef]
  14. L. Gross. Quantitative training for life science students. BioScience, 44 (1994), 59. [CrossRef]
  15. P. Higgs. Frequency distributions in population genetics parallel those in statistical physics. Physical Review E, (1995), No. 51, 95–101. [CrossRef]
  16. W. Hwang, Y. Cho, A. Zhang, M. Ramanathan. A novel functional module detection algorithm for protein-protein interaction networks. Algorithms for Molecular Biology (2006), No. 2, 24, doi:10.1186/1748-7188-1-24.
  17. J. Jacquez. Compartmental Analysis in Biology and Medicine, 3rd ed., Biomedware, Ann Arbor, MI, 1996.
  18. I. Karsai, G. Kampis. The crossroad between biology and mathematics: Scientific method as the basics of scientific literacy. BioScience, 60 (2010), 632–638. [CrossRef]
  19. J. Knisley. Netlogo Migration Simulations, http://math.etsu.edu/symbiosis/migrations, (2011).
  20. J. Knisley, I. Karsai, A. Godbole, M. Helfgott, K. Joplin, E. Seier, D. Moore, H. Miller. Storytelling in the Symbiosis Project. To appear in Undergraduate Mathematics for the Life Sciences: Processes, Models, Assessment, and Directions, MAA Lecture Notes, 2010.
  21. J. Knisley. A 4-Stage Model of Mathematical Learning. The Mathematics Educator, 12 (2002), No. 1, 11–16.
  22. D. Lauffenburger. Receptors. Oxford University Press, Oxford, 1993.
  23. M. Malice, C. Lefevre. On Linear Stochastic Compartmental Models in Discrete Time. Bulletin of Mathematical Biology, 47 (1985), No. 2, 287–293. [CrossRef] [MathSciNet]
  24. D. Moore, M. Helfgott, A. Godbole, K. Joplin, I. Karsai, J. Knisley, H. Miller, E. Seier. Creating Quantitative Biologists: The Immediate Future of SYMBIOSIS. To appear in Undergraduate Mathematics for the Life Sciences: Processes, Models, Assessment, and Directions, MAA Lecture Notes, 2010.
  25. J. Murray. Mathematical Biology. Springer, New York, 1989.
  26. W. Reed, B. Hughes. Theoretical size distribution of fossil taxa: analysis of a null model. Theoretical Biology and Medical Modeling, 4 (2007), 12, doi:10.1186/1742-4682-4-12 [CrossRef]
  27. L. Steen, ed. Math & Bio 2010: Linking Undergraduate Disciplines. Mathematical Association of America, Washington, DC, 2005.
  28. D. Usher, T. Driscoll, P. Dhurjati, J. Pelesko, L. Rossi, G. Schleiniger, K. Pusecker, H. White. A transformative model for undergraduate quantitative biology education. CBE Life Sci Educ., 9 (2010), No. 3, 181–188. [CrossRef] [PubMed]
  29. D. Welch, E. Rechisky, M. Melnychuk, A. Porter, C. Walters. Survival of Migrating Salmon Smolts in Large Rivers With and Without Dams. PLoS Biol, 6 (2008), No. 10, e265. doi:10.1371/journal.pbio.0060265. [CrossRef] [PubMed]
  30. U. Wilensky. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL, (1999).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.