Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 6, 2011
Biomathematics Education
Page(s) 295 - 313
Section Continuous Modeling
DOI https://doi.org/10.1051/mmnp/20116616
Published online 05 October 2011
  1. American Association of Medical Colleges/Howard Hughes Medical Institute. Scientific foundations for future physicians. Washington, D.C., 2009. [Google Scholar]
  2. J. S. Amthor. Respiration and crop productivity. Springer-Verlag, New York, New York, 1989. [Google Scholar]
  3. J. S. Amthor J. R. Cummings. Low levels of ozone increase bean leaf maintenance respiration. Canadian Journal of Botany, 66 (1988), 724–726. [CrossRef] [Google Scholar]
  4. P. A. Beedlow, D. T. Tingey, D. L. Phillips, W. E. Hogsett, D. M. Olszyk. Rising atmospheric CO2 and carbon sequestration in forests. Frontiers in Ecology and the Environment, 2 (2004), 315–322. [Google Scholar]
  5. A. J. Bloom, F. S. Chapin III, H. A. Mooney. Resource limitation in plants–an economic analogy. Annual Review of Ecology and Systematics, 16 (1985), 363–392. [Google Scholar]
  6. C. Boehmel, I. Lewandowski, W. Claupein. Comparing annual and perennial energy cropping systems with different management intensities. Agricultural Systems, 96 (2008), 224–236. [CrossRef] [Google Scholar]
  7. B. Carlsson. Ecological understanding 1: ways of experiencing photosynthesis. International Journal of Science Education, 24 (2002), 681–699. [CrossRef] [Google Scholar]
  8. D. Ebert-May, J. Batzli, H. Lim. Disciplinary research strategies for assessment of learning. BioScience, 53 (2003), 1221–1228. [CrossRef] [Google Scholar]
  9. N. J. Gibbons, C. Evans, A. Payne, K. Shah, D. K. Griffin. Computer simulations improve university instructional laboratories. Cell Biology Education, 3 (2004), 263–269. [CrossRef] [PubMed] [Google Scholar]
  10. J. Goudriaan, H. H. van Laar. Modelling potential crop growth processes: textbook with exercises. Kluwer Academic Publishers, Dordrecht, Netherlands, 1994. [Google Scholar]
  11. R. Greenler, J. Greenler, D. Lauffer, P. Williams. Spiraling through life with fast plants: an inquiry rich manual. Kendall/Hunt Publishing Company, Dubuque, Iowa, 2001. [Google Scholar]
  12. Y. L. Grossman, T. M. DeJong. Maximum fruit growth potential and seasonal patterns of resource dynamics during peach growth. Annals of Botany, 75 (1995), 553–560. [CrossRef] [Google Scholar]
  13. Y. L. Grossman, T. M. DeJong. Maximum vegetative growth potential and seasonal patterns of resource dynamics during peach growth. Annals of Botany, 76 (1995), 473–482. [CrossRef] [Google Scholar]
  14. Y. L. Grossman, T. M. DeJong. PEACH: A model of reproductive and vegetative growth in peach trees. Tree Physiology, 14 (1994), 329–345. [PubMed] [Google Scholar]
  15. Y. L. Grossman, T. M. DeJong, S. F. Vosburg. PEACH. First review folder. BioQUEST Library, (2002), VI:116–117. Website http://www.bioquest.org/BQLibrary/library_result.php [accessed 16 August 2010]. [Google Scholar]
  16. F. Haslam, D. F. Treagust. Diagnosing secondary students’ misconceptions of photosynthesis and respiration in plants using a two-tier multiple choice instrument. Journal of Biological Education, 21 (1987), 203–211. [CrossRef] [Google Scholar]
  17. L. J. Jackson, A. S. Trebitz, K. L. Cottingham. An introduction to the practice of ecological modeling. BioScience, 50 (2000), 694–706. [CrossRef] [Google Scholar]
  18. I. R. Johnson. PlantMod: exploring the physiology of plant canopies. IMJ Software, Armidale, NSW, Australia, 2010. Website http://www.imj.com.au/software/plantmod [accessed 16 August 2010]. [Google Scholar]
  19. G. S. Khush. Green revolution: the way forward. Nature Reviews Genetics, 2 (2001), 815–822. [CrossRef] [PubMed] [Google Scholar]
  20. S. Kishitani, R. Shibles. Respiration rates of soybean cultivars. Crop Science, 26 (1986), 580–583. [CrossRef] [Google Scholar]
  21. C. Kleier, B. Farnsworth, W. Winner. Biomass, reproductive output, and physiological responses of rapid-cycling Brassica (Brassica rapa) to ozone and modified root temperature. New Phytologist, 139 (1998), 657–664. [CrossRef] [Google Scholar]
  22. H. Lambers, F. S. Chapin III, T. L. Pons. Plant physiological ecology. Springer-Verlag, New York, New York, 1998. [Google Scholar]
  23. X. Le Roux, A. Lacointe, A. Escobar-Gutiérrez, S. Le Dizès. Carbon-based models of individual tree growth: a critical appraisal. Annals of Forest Science, 58 (2001), 469–506. [CrossRef] [Google Scholar]
  24. L. F. M. Marcelis. A simulation model for dry matter partitioning in cucumber. Annals of Botany, 74 (1994), 43–52. [PubMed] [Google Scholar]
  25. L. F. M. Marcelis. Sink strength as a determinant of dry matter partitioning in the whole plant. Journal of Experimental Botany, 47 (1996), 1281–1291. [CrossRef] [PubMed] [Google Scholar]
  26. L. F. M. Marcelis, E. Heuvelink, J. Goudriaan. Modelling biomass production and yield of horticultural crops: a review. Scientia Horticulturae, 74 (1998), 83–111. [CrossRef] [Google Scholar]
  27. E. Meir, J. Perry, D. Stal, S. Maruca, E. Klopfer. How effective are simulated molecular-level experiments for teaching diffusion and osmosis? Cell Biology Education, 4 (2005), 235–248. [CrossRef] [PubMed] [Google Scholar]
  28. H. A. Mooney. The carbon balance of plants. Annual Review of Ecology and Systematics, 3 (1972), 315–346. [CrossRef] [Google Scholar]
  29. National Research Council. A new biology for the 21st century: ensuring the United States leads the coming biology revolution. National Academies Press, Washington, DC., 2009. [Google Scholar]
  30. E. C. Odum, H. T. Odum, N. Peterson. Environmental decision making. BioQUEST Library, (1995), VI:116–117. Website http://www.bioquest.org/BQLibrary/library_result.php [accessed 16 August 2010]. [Google Scholar]
  31. G. Piñeiro, S. Perelman, J. P. Guerschman, J. M. Paruelo. How to evaluate models: observed vs. predicted or predicted vs. observed. Ecological Modelling, 216 (2008), 316–322. [CrossRef] [Google Scholar]
  32. H. Poorter, C. Remkes, H. Lambers. Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiology, 94 (1990), 621–627. [CrossRef] [PubMed] [Google Scholar]
  33. F. B. Salisbury, C. W. Ross. Plant Physiology, 4th ed. Wadsworth Publishing Company, Belmont, California, 1992. [Google Scholar]
  34. F. Tardieu. Why work and discuss the basic principles of plant modelling 50 years after the first plant models? Editorial. Journal of Experimental Botany, 61 (2010), 2039–2041. [CrossRef] [Google Scholar]
  35. J. H. M. Thornley, I. R. Johnson. Plant and crop modelling: a mathematical approach to plant and crop physiology. Clarendon Press, Oxford, 1990. [Google Scholar]
  36. J. Vos, J. B. Evers, G. H. Buck-Sorlin, B. Andrieu, M. Chelle, P. H. B. de Visser. Functional-structural plant modelling: a new versatile tool in crop science. Journal of Experimental Botany, 61 (2010), 2101–2115. [CrossRef] [PubMed] [Google Scholar]
  37. P. Wareing, J. Patrick. Source-sink relationships and the partition of assimilates in plants. In J. Cooper [ed.], Photosynthesis and productivity in different environments, 481–499. Cambridge University Press, Cambridge, 1975. [Google Scholar]
  38. P. H. Williams, C. B. Hill. Rapid-cycling populations of Brassica. Science, 232 (1986), 1385–1389. [CrossRef] [PubMed] [Google Scholar]
  39. C. D. Wilson, C. W. Anderson, M. Heidemann, J. E. Merrill, B. W. Merritt, G. Richmond, D. F. Sibley, J. M. Parker. Assessing students’ ability to trace matter in dynamic systems in cell biology. CBE Life Sciences Education, 5 (2006), 323–331. [CrossRef] [PubMed] [Google Scholar]
  40. Wisconsin Fast Plant Program. Exploring with Wisconsin fast plants. University of Wisconsin-Madison, Madison, Wisconsin, 1995. [Google Scholar]
  41. X-G. Zhu, S. P. Long, D. R. Ort. Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61 (2010), 235–261. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.