Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 6, 2011
Biomathematics Education
Page(s) 39 - 60
Section Discrete Modeling
Published online 05 October 2011
  1. BIO2010: Transforming undergraduate education for future research biologists. The National Academies Press, Washington, DC, 2003. [Google Scholar]
  2. C. Neuhauser. Calculus for biology and medicine, 2nd ed. Prentice Hall, Upper Saddle River, NJ, 2003. [Google Scholar]
  3. F. Adler. Modeling the dynamics of life: Calculus and Probability for life scientists, 2nd ed. Thompson, Belmont, CA, 2005. [Google Scholar]
  4. J. Cohen. Mathematics is biology’s next microscope, only better; Biology is mathematics’ next physics, only better. PLoS Biol., 2 (2004), No. 12, e439. doi:10.1371/journal.pbio.0020439. [Google Scholar]
  5. D. Cox, J. Little, D. O’Shea. Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, 3rd edition. Springer, New York, 2007. [Google Scholar]
  6. F. Jacob, J. Monod. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol., 3 (1961), 318–356. [CrossRef] [PubMed] [Google Scholar]
  7. J. Gallian. Contemporary abstract algebra, 6th edition. New York, Houghton Mifflin Company, 2006. [Google Scholar]
  8. S. Kauffman. Metabolic stability and epigenesis in randomly connected nets. J. Theor. Biol., 22 (1969), 437–467. [CrossRef] [PubMed] [Google Scholar]
  9. R. Laubenbacher, B. Sturmfels. Computer algebra in systems biology. The American Mathematical Monthly, 116 (2009), No. 10, 882–891. [CrossRef] [Google Scholar]
  10. Mathematical Biosciences Institute (MBI) Current Topic Workshop: Mathematical Developments Arising from Biology. November 8-10, 2009. [Google Scholar]
  11. A New Biology for the 21st century. Committee on a New Biology for the 21st century: Ensuring the United States leads the coming biology revolution. The National Academies Press, Washington, DC, 2009. [Google Scholar]
  12. R. Robeva, J. Kirkwood, R. Davies, M. Johnson, L. Farhy, B. Kovatchev, M. Straume. An invitation to biomathematics. Academic Press, Burlington, MA, 2008. [Google Scholar]
  13. R. Robeva, R. Laubenbacher. Mathematical biology education: beyond calculus. Science, 325 (2009), 542–543. [CrossRef] [PubMed] [Google Scholar]
  14. R. Robeva, R. Davies, T. Hodge, and A. Enyedy. Mathematical biology modules based on modern molecular biology and modern discrete mathematics. CBE - LSE, 9 (2010), Fall, 227–240. [Google Scholar]
  15. R. Robeva. Systems Biology - old concepts, new science, new challenges. Front. Psychiatry, 1 (2010), No. 1, 1–2. doi:10.3389/fpsyt.2010.00001 [PubMed] [Google Scholar]
  16. J. Saez-Rodriguez, L. Simeoni, J. Lindquist, R. Hemenway, U. Bommhardt, B. Arndt, U. Haus, R. Weismantel, E. Gilles, S. Klamt, B. Schraven. A logical model provides insights into T cell receptor signaling, PLoS Comp. Biol., 3 (2007), No. 8, e163. doi:10.1371/journal.pcbi.0030163. [CrossRef] [Google Scholar]
  17. A. Samal, S. Jain. The regulatory network of E. coli metabolism as a Boolean dynamical system exhibits both homeostasis and flexibility of response. BMC Systems Biology, 2, (2008), Article 21. doi:10.1186/1752-0509-2-21 [Google Scholar]
  18. M. Santillan, M. Mackey, E. Zeron. Origin of bistability in the lac operon. Biophys. J., 92 (2007), 3830–3842. [CrossRef] [PubMed] [Google Scholar]
  19. M. Santillan, M. Mackey. Quantitative approaches to the study of bistability in the lac operon of Escherichia coli. J. R. Soc. Interface, 5 (2008), S29-S39 [CrossRef] [PubMed] [Google Scholar]
  20. B. Stigler, A. Veliz-Cuba. Network topology as a driver of bistability in the lac operon. Available at [Google Scholar]
  21. N. Yildrim, M. Mackey. Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data. Biophys. J., 84 (2003), 2841–2851. [CrossRef] [PubMed] [Google Scholar]
  22. R. Zhang, M. Shah, J. Yang, S. Nyland, X. Liu, J. Yun, R. Albert, T. Loughran. Network model of survival signaling in large granular lymphocyte leukemia. Proc. Natl. Acad. Sci. USA, 105 (2008), 16308–16313. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.