Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 7, 2011
Mathematical modeling in biomedical applications
Page(s) 13 - 26
Published online 15 June 2011
  1. S. Andrew, C.T.H. Baker, G.A. Bocharov. Rival approaches to mathematical modelling in immunology. J. Comput. Appl. Math., 205 (2007), 669–686. [CrossRef] [MathSciNet]
  2. V. Baldazzi, P. Paci, M. Bernaschi, F. Castiglione. Modeling lymphocyte homing and encounters in lymph nodes. BMC Bioinform., 10 (2009), doi:10.1186/1471-2105-10-387.
  3. C. Beauchemin, N.M. Dixit, A.S. Perelson. Characterizing T cell movement within lymph nodes in the absence of antigen. J. Immunol., 178 (2007), 5505–5512. [PubMed]
  4. J.B. Beltman, A.F. Maree, J.N. Lynch, M.J. Miller, R.J. de Boer. Lymph node topology dictates T cell migration behavior. J. Exp. Med., 204 (2007), 771–780. [CrossRef] [PubMed]
  5. G.A. Bocharov, G.I. Marchuk. Applied problems of mathematical modelling in immunology. Comput. Math. Math. Phys., 40 (2000), 1905–1920. [MathSciNet]
  6. G. Bocharov. Understanding complex regulatory systems: Integrating molecular biology and systems analysis. Transf. Med. Hemoth., 32 (2005), No. 6, 304–321. [CrossRef]
  7. G. Bocharov, R. Zust, L. Cervantes-Barragan, T. Luzyanina, E. Chiglintcev, V.A. Chereshnev, V. Thiel, B. Ludewig. A systems immunology approach to plasmacytoid dendritic cell function in cytopathic virus infections. PLoS Pathogens, 6(7) (2010), e1001017.doi:10.1371/journal.ppat.1001017, 1–14.
  8. A.A. Danilov. Unstructured tetrahedral mesh generation technology. Comput. Math. Math. Phys., 50 (2010), 146–163. [MathSciNet]
  9. A.A. Danilov, Yu.V. Vassilevski. A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes. Russ. J. Numer. Anal. Math. Modelling, 24 (2009), 207–227. [CrossRef]
  10. Z. Faroogi, R.R. Mohler. Distribution models of recirculating lymphocytes. IEEE Trans. Biomed. Engrg., 36 (1989), 355–362. [CrossRef]
  11. Z. Grossman, M. Meier-Schellersheim, W.E. Paul, L.J. Picker. Pathogenesis of HIV infection: what the virus spares is as important as what it destroys. Nat. Med., 12 (2006), 289–295. [CrossRef] [PubMed]
  12. T. Junt, E. Scandella, B. Ludewig. Form follows function: lymphoid tissues microarchitecture in antimicrobial immune defense. Nature Rev. Immunol., 8 (2008), 764–775. [CrossRef] [PubMed]
  13. J. Keener, J. Sneyd. Mathematical physiology. Springer-Verlag, New York, 1998.
  14. T.B. Kepler, C. Chan. Spatiotemporal programming of a simple inflammatory process. Immunol. Reviews, 216 (2007), 153–163.
  15. F. Klauschen, M. Ishii, H. Qi, M. Bajenoff, J.G. Egen, R.N. Germain, M. Meier-Schellersheim. Quantifying cellular interaction dynamics in 3D fluorescence microscopy data. Nat. Protoc., 4 (2009), 1305–1311. [CrossRef] [PubMed]
  16. T. Lammermann, M. Sixt. The microanatomy of T cell responses. Immunol. Reviews, 221 (2008), 26–43. [CrossRef] [PubMed]
  17. P. Lane, R.-P. Sekaly. HIV and the architecture of immune responses. Semin. Immunol. 20 (2008), 157–158. [CrossRef]
  18. J.J. Linderman, T. Riggs, M. Pande, M. Miller, S. Marino, D.E. Kirschner. Characterizing the dynamics of CD4+ T cell priming within a lymph node. J. Immunol., 184 (2010), 2873–2885. [CrossRef] [PubMed]
  19. G.I. Marchuk. Mathematical modelling of immune response in infectious diseases. Kluwer Academic Publishres, Dordrecht, 1997.
  20. G.I. Marchuk. Methods of Numerical Mathematics. Springer-Verlag, New York, 1982.
  21. G.I. Marchuk, V. Shutyaev, G. Bocharov Adjoint equations and analysis of complex systems: application to virus infection modeling. J. Comput. Appl. Math., 184 (2005), 177–204. [CrossRef] [MathSciNet]
  22. R.R. Mohler, Z. Faroogi, T. Heilig. Lymphocyte distribution and lymphatic dynamics. In: Vistas in Applied Mathematics: Numerical Analysis, Atmospheric Sciences, Immunology. (Eds. A.V. Balakrishnan, A.A. Dorodnitsyn, and J.-L. Lions) 1986, 317–333.
  23. J.H. Meyers, J.S. Justement, C.W. Hallahan, E.T. Blair, Y.A. Sun, M.A. O’Shea, G. Roby, S. Kottilil, S. Moir, C.M. Kovacs, T.W. Chun, A.S. Fauci. Impact of HIV on cell survival and antiviral activity of plasmacytoid dendritic cells. PLoS ONE, 2 (2008), No. 5, e458. doi:10.1371/journal.pone.0000458
  24. R.R. Mohler, C. Bruni, A. Gandolfi. A systems approach to immunology. Proceedings of the IEEE, 68 (1980), 964–990 [CrossRef]
  25. A.S. Perelson, F.W. Wiegel. Scaling aspects of lymphocyte trafficking. J. Theor. Biol., 257 (2009), 9–16. [CrossRef] [PubMed]
  26. E. Scandella, B. Bolinger, E. Lattmann, S. Miller, S. Favre, D.R. Littman, D. Finke, S.A. Luther, T. Junt, B. Ludewig. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nature Immunol., 9 (2008), 667–675. [CrossRef]
  27. F. Pfeiffer, V. Kumar, S. Butz, D. Vestweber, B.A. Imhof, J.V. Stein, B. Engelhardt. Distinct molecular composition of blood and lymphatic vascular endothelial cell junctions establishes specific functional barriers within the peripheral lymph node. Eur. J. Immunol., 38 (2008), 2142–2155. [CrossRef] [PubMed]
  28. D.J. Stekel, C.E. Parker, M.A. Nowak. A model of lymphocyte recirculation. Immunol. Today, 18 (1997), No. 5, 216–21. [CrossRef] [PubMed]
  29. D.J. Stekel. The simulation of density-dependent effects in the recirculation of T lymphocytes. Scand. J. Immunol., 47 (1998), 426–430. [CrossRef] [PubMed]
  30. S. Stoll, J. Delon, T.M. Brotz, R.N. Germain. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science, 296 (2002), 1873–1876. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.