Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 6, Number 7, 2011
Mathematical modeling in biomedical applications
|
|
---|---|---|
Page(s) | 27 - 38 | |
DOI | https://doi.org/10.1051/mmnp/20116703 | |
Published online | 15 June 2011 |
- A.C. Burton. Rate of growth of solid tumours as a problem of diffusion. Growth, 30 (1966), 157–176. [PubMed] [Google Scholar]
- H. Bueno, G. Ercole, A. Zumpano. Asymptotic behaviour of quasi-stationary solutions of a nonlinear problem modelling the growth of tumours. Nonlinearity, 18 (2005), 1629–1642. [CrossRef] [MathSciNet] [Google Scholar]
- H.M. Byrne, M.A.J. Chaplain. Growth of necrotic tumours in the presence and absence of inhibitors. Math. Biosci., 135 (1996), 187–216. [CrossRef] [PubMed] [Google Scholar]
- S.K. Chintala, J.R. Rao. Invasion of human glioma: role of extracellular matrix proteins. Frontiers in Bioscience, 1 (1996), 324–339. [Google Scholar]
- S. Fedotov, V. Mendez. Continuous-time random walks and traveling fronts. Phys. Rev. E, 66 (2002), 030102. [Google Scholar]
- S. Fedotov, A. Iomin. Migration and Proliferation Dichotomy in Tumor-Cell Invasion. Phys. Rev. Lett., 98 (2007), 118101. [CrossRef] [PubMed] [Google Scholar]
- A. Giese, R. Bjerkvig, M.E. Berens, M. Westphal. Cost of migration: invasion of malignant gliomas and implications for treatment. J. Clinical Oncology, 21 (2003), 1624–1636. [Google Scholar]
- H.P. Greenspan. On the growth and stability of cell cultures and solid tumors. J. Theor. Biol., 56 (1976), 229–242. [Google Scholar]
- A. Gusev, A. Polezhaev. Modelling of a cell population evolution for the case existence of maximal possible total cell density. Kratkie soobscheniya po fizike FIAN, 11-12 (1997), 85–90. [Google Scholar]
- D. Hanahan, R.A. Weinberg. The hallmarks of cancer. Cell, 100 (2000), 57–70. [CrossRef] [PubMed] [Google Scholar]
- A.L. Harris. Hypoxia – a key regulatory factor in tumour growth. Nat. Rev. Cancer, 2 (2002), 38–47. [CrossRef] [PubMed] [Google Scholar]
- H. Hatzikirou, D. Basanta, M. Simon, K. Schaller, A. Deutsch. ’Go or Grow’: the key to the emergence of invasion in tumour progression? Math. Med. Biol., 7 (2010), 1–17. [Google Scholar]
- A. Iomin. Toy model of fractional transport of cancer cells due to self-entrapping. Phys. Rev. E, 73 (2006), 061918. [CrossRef] [Google Scholar]
- A.V. Kolobov, A.A. Polezhaev, G.I. Solyanyk. Stability of tumour shape in pre-angiogenic stage of growth depends on the migration capacity of cancer cells. Mathematical Modelling & Computing in Biology and Medicine (Ed. V. Capasso), 2003, 603–609. [Google Scholar]
- A.K. Laird. Dynamics of tumor growth. Br. J. Cancer, 18 (1964), 490–502. [CrossRef] [Google Scholar]
- J.S. Lowengrub, H.B. Frieboes, F. Jin, Y-L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini. Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity, 23 (2010), 1–91. [Google Scholar]
- W. van Saarloos. Front propagation into unstable states. Physics Reports, 386 (2003), 29–222. [Google Scholar]
- J.A. Sherratt, M.A.J. Chaplain. A new mathematical model for avascular tumour growth. J. Math. Biol., 43 (2001), 291–312. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- K.R. Swansona, C. Bridge, J.D. Murray, E.C. Alvord Jr. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurolog. Sci., 216 (2003), 1–10. [CrossRef] [Google Scholar]
- Y. Tao, M. Chen. An elliptic-hyperbolic free boundary problem modelling cancer therapy. Nonlinearity, 19 (2006), 419–440. [CrossRef] [MathSciNet] [Google Scholar]
- R.H. Thomlinson, L.H. Gray. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer, 9 (1955), 539–549. [CrossRef] [PubMed] [Google Scholar]
- J.P. Ward, J.R. King. Mathematical modelling of avascular-tumour growth. IMA J. Math. Appl. Med. Biol., 14 (1997), 39–69. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.