Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 7, 2011
Mathematical modeling in biomedical applications
Page(s) 27 - 38
Published online 15 June 2011
  1. A.C. Burton. Rate of growth of solid tumours as a problem of diffusion. Growth, 30 (1966), 157–176. [PubMed]
  2. H. Bueno, G. Ercole, A. Zumpano. Asymptotic behaviour of quasi-stationary solutions of a nonlinear problem modelling the growth of tumours. Nonlinearity, 18 (2005), 1629–1642. [CrossRef] [MathSciNet]
  3. H.M. Byrne, M.A.J. Chaplain. Growth of necrotic tumours in the presence and absence of inhibitors. Math. Biosci., 135 (1996), 187–216. [CrossRef] [PubMed]
  4. S.K. Chintala, J.R. Rao. Invasion of human glioma: role of extracellular matrix proteins. Frontiers in Bioscience, 1 (1996), 324–339.
  5. S. Fedotov, V. Mendez. Continuous-time random walks and traveling fronts. Phys. Rev. E, 66 (2002), 030102. [CrossRef]
  6. S. Fedotov, A. Iomin. Migration and Proliferation Dichotomy in Tumor-Cell Invasion. Phys. Rev. Lett., 98 (2007), 118101. [CrossRef] [PubMed]
  7. A. Giese, R. Bjerkvig, M.E. Berens, M. Westphal. Cost of migration: invasion of malignant gliomas and implications for treatment. J. Clinical Oncology, 21 (2003), 1624–1636. [CrossRef] [PubMed]
  8. H.P. Greenspan. On the growth and stability of cell cultures and solid tumors. J. Theor. Biol., 56 (1976), 229–242. [CrossRef] [PubMed]
  9. A. Gusev, A. Polezhaev. Modelling of a cell population evolution for the case existence of maximal possible total cell density. Kratkie soobscheniya po fizike FIAN, 11-12 (1997), 85–90.
  10. D. Hanahan, R.A. Weinberg. The hallmarks of cancer. Cell, 100 (2000), 57–70. [CrossRef] [PubMed]
  11. A.L. Harris. Hypoxia – a key regulatory factor in tumour growth. Nat. Rev. Cancer, 2 (2002), 38–47. [CrossRef] [PubMed]
  12. H. Hatzikirou, D. Basanta, M. Simon, K. Schaller, A. Deutsch. ’Go or Grow’: the key to the emergence of invasion in tumour progression? Math. Med. Biol., 7 (2010), 1–17.
  13. A. Iomin. Toy model of fractional transport of cancer cells due to self-entrapping. Phys. Rev. E, 73 (2006), 061918. [CrossRef]
  14. A.V. Kolobov, A.A. Polezhaev, G.I. Solyanyk. Stability of tumour shape in pre-angiogenic stage of growth depends on the migration capacity of cancer cells. Mathematical Modelling & Computing in Biology and Medicine (Ed. V. Capasso), 2003, 603–609.
  15. A.K. Laird. Dynamics of tumor growth. Br. J. Cancer, 18 (1964), 490–502. [CrossRef]
  16. J.S. Lowengrub, H.B. Frieboes, F. Jin, Y-L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini. Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity, 23 (2010), 1–91. [CrossRef] [PubMed]
  17. W. van Saarloos. Front propagation into unstable states. Physics Reports, 386 (2003), 29–222. [CrossRef]
  18. J.A. Sherratt, M.A.J. Chaplain. A new mathematical model for avascular tumour growth. J. Math. Biol., 43 (2001), 291–312. [CrossRef] [MathSciNet] [PubMed]
  19. K.R. Swansona, C. Bridge, J.D. Murray, E.C. Alvord Jr. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurolog. Sci., 216 (2003), 1–10. [CrossRef]
  20. Y. Tao, M. Chen. An elliptic-hyperbolic free boundary problem modelling cancer therapy. Nonlinearity, 19 (2006), 419–440. [CrossRef] [MathSciNet]
  21. R.H. Thomlinson, L.H. Gray. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer, 9 (1955), 539–549. [CrossRef] [PubMed]
  22. J.P. Ward, J.R. King. Mathematical modelling of avascular-tumour growth. IMA J. Math. Appl. Med. Biol., 14 (1997), 39–69. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.