Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 7, 2011
Mathematical modeling in biomedical applications
Page(s) 39 - 54
DOI https://doi.org/10.1051/mmnp/20116704
Published online 15 June 2011
  1. V.A. Bloomfield. Survey of biomolecular hydrodynamics. On-Line Biophysics Textbook: Separations and Hydrodynamics, 2000. [Google Scholar]
  2. M.L. Connolly. Analytical molecular surface calculation. J. Appl. Crystallogr., 16 (1983), 548–558. [CrossRef] [Google Scholar]
  3. R.M.C. Dawson, D.C. Elliott, W.H. Elliott, K.M. Jones. Data for biochemical research. Oxford Science Publications, OUP, Oxford, 1986. [Google Scholar]
  4. M. Doi, S.F. Edwards. The theory of polymer dynamics. Oxford University Press, New York, 1986. [Google Scholar]
  5. S.R. Durell, J.K. Labanowski, E.L. Gross. Modeling of the electrostatic potential field of plastocyanin. Arch. Biochem. Biophys., 277 (1990), 241–254. [CrossRef] [PubMed] [Google Scholar]
  6. A.V. Finkelstein, O.B. Ptitsyn. Protein physics. A course of lectures. Academic Press, Amsterdam/Boston/London/New York/Oxford/Paris/San Diego/San Francisco/Singapore/Sydney/Tokyo, 2002. [Google Scholar]
  7. F. Fogolari, A. Brigo, H. Molinari. The Poisson-Boltzmann equation for biomolecular electrostatics: A tool for structural biology. J. Mol. Recognit., 15 (2002), 377–392. [CrossRef] [PubMed] [Google Scholar]
  8. M. Hervas, M. De la Rosa, G. Tollin. A comparative laser-flash absorption spectroscopy study of algal plastocyanin and cytochrome c552 photooxidation by photosystem I particles from spinach. Eur. J. Biochem., 203 (1992), 115–120. [CrossRef] [PubMed] [Google Scholar]
  9. M. Hippler, F. Drepper. Electron Transfer Between Photosystem I and Plastocyanin or Cytochrome c6, in Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase. J. (Ed. H. Golbeck). Springer, 2006, 499–513. [Google Scholar]
  10. A.B. Hope. Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms. Biochim. Biophys. Acta, 1456 (2000), 5–26. [CrossRef] [PubMed] [Google Scholar]
  11. J.K. Hurley, J.T. Hazzard, M. Martinez-Julvez, M. Medina, C. Gomez-Moreno, G. Tollin. Electrostatic forces involved in orienting Anabaena ferredoxin during binding to Anabaena ferredoxin:NADP+ reductase: site-specific mutagenesis, transient kinetic measurements, and electrostatic surface potentials. Protein Sci., 8 (1999), 1614–1622. [CrossRef] [PubMed] [Google Scholar]
  12. J. Janin. Kinetics and thermodynamics of protein-protein interactions. Protein-protein recognition. (Ed. C. Kleanthous). Oxford University Press, Oxford, 2000, 1–32. [Google Scholar]
  13. O.S. Knyazeva, I.B. Kovalenko, A.M. Abaturova, G.Y. Riznichenko, E.A. Grachev, A.B. Rubin. Multiparticle computer simulation of plastocyanin diffusion and interaction with cytochrome f in the electrostatic field of the thylakoid membrane. Biophysics, 55 (2010), No. 2, 221–227. [CrossRef] [Google Scholar]
  14. I.B. Kovalenko, A.M. Abaturova, P.A. Gromov, D.M. Ustinin, E.A. Grachev, G.Y. Riznichenko, A.B. Rubin. Direct simulation of plastocyanin and cytochrome f interactions in solution. Phys. Biol., 3 (2006), 121–129. [CrossRef] [PubMed] [Google Scholar]
  15. I.B. Kovalenko, A.M. Abaturova, P.A. Gromov, D.M. Ustinin, G.Y. Riznichenko, E.A. Grachev, A.B. Rubin. Computer simulation of plastocyanin-cytochrome f complex formation in the thylakoid lumen. Biophysics, 53 (2008), No. 2, 140–146. [CrossRef] [Google Scholar]
  16. I.B. Kovalenko, A.M. Abaturova, G.Y. Riznichenko, A.B. Rubin. A novel approach to computer simulation of protein-protein complex formation. Dokl. Biochem. Biophys., 427 (2009), 215–217. [CrossRef] [PubMed] [Google Scholar]
  17. I.B. Kovalenko, A.M. Abaturova, G.Y. Riznichenko, A.B. Rubin. Computer simulation of interaction of photosystem 1 with plastocyanin and ferredoxin. BioSystems, 103 (2010), 180–187. [CrossRef] [PubMed] [Google Scholar]
  18. I.B. Kovalenko, A.N. Diakonova, A.M. Abaturova, G.Y. Riznichenko, A.B. Rubin. Direct computer simulation of ferredoxin and FNR complex formation in solution. Phys. Biol., 7 (2010), No. 2, 026001. [CrossRef] [PubMed] [Google Scholar]
  19. H. Long, C.H. Chang, P.W. King, M.L. Ghirardi, K. Kim. Brownian dynamics and molecular dynamics study of the association between hydrogenase and ferredoxin from Chlamydomonas reinhardtii. Biophys. J., 95 (2008), 3753-3766. [CrossRef] [PubMed] [Google Scholar]
  20. F.S. Mathews, A.G. Mauk, G.R. Moore. Protein-protein complexes formed by electron transfer proteins, in Protein-Protein recognition. (Ed. C. Kleanthous). Oxford University Press, Oxford, 2000, 60–101. [Google Scholar]
  21. M. Medina, M. Hervas, J.A. Navarro, M.A. De la Rosa, C. Gomez-Moreno, G. Tollin. A laser flash absorption spectroscopy study of Anabaena sp. PCC 7119 flavodoxin photoreduction by photosystem I particles from spinach. FEBS, 313 (1992), No. 3, 239–242. [CrossRef] [Google Scholar]
  22. F. Panneton, P. L’Ecuyer. On the xorshift random number generators. ACM T. Model. Comput. Sci., 15 (2005), No. 4, 346–361. [CrossRef] [Google Scholar]
  23. D.C. Pearson, E.L. Gross. Brownian dynamics study of the interaction between plastocyanin and cytochrome f. Biophys. J., 75 (1998), 2698–2711. [CrossRef] [PubMed] [Google Scholar]
  24. F. Rienzo, R. Gabdoulline, M. Menziani, P. Benedetti, R. Wade. Electrostatic analysis and brownian dynamics simulation of the association of plastocyanin and cytochrome f. Biophys. J., 81 (2001), 3090–3104. [CrossRef] [PubMed] [Google Scholar]
  25. G.Y. Riznichenko, N.E. Belyaeva, I.B. Kovalenko, A.B. Rubin. Mathematical and computer modeling of primary photosynthetic processes. Biophys. J., 54 (2009), No. 1, 10–22. [CrossRef] [Google Scholar]
  26. G.Y. Riznichenko, I.B. Kovalenko, A.M. Abaturova, A.N. Diakonova, D.M. Ustinin, E.A. Grachev, A.B. Rubin. New direct dynamic models of protein interactions coupled to photosynthetic electron transport reactions. Biophys. Rev., 2 (2010), No. 3, 101–110. [CrossRef] [PubMed] [Google Scholar]
  27. A. Rubin, G. Riznichenko. Modeling of the primary processes in a photosynthetic membrane. Photosynthesis in silico: Understanding Complexity from Molecules to Ecosystems. (Eds. A. Laisk, L. Nedbal, and Govindjee). Springer, Dordrecht, 2009, 151–176. [Google Scholar]
  28. P. Setif. Electron transfer from the bound Iron-Sulfur clusters to Ferredoxin/Flavodoxin: Kinetic and structural properties of Ferredoxin/Flavodoxin reduction by photosystem I. In: Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase. (Ed. J.H. Golbeck). Springer, 2006, 439–454. [Google Scholar]
  29. K. Sigfridsson. Ionic strength and pH dependence of the reaction between plastocyanin and photosystem 1. Evidence of a rate-limiting conformational change. Photosynth. Res., 54 (1997), 143–153. [CrossRef] [Google Scholar]
  30. M. Ubbink, M. Ejdebeck, B.G. Karlsson, D.S. Bendall. The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure, 6 (1998), 323–335. [CrossRef] [PubMed] [Google Scholar]
  31. G.M. Ullmann, E.-W. Knapp. Electrostatic models for computing protonation and redox equilibria in proteins. Eur. Biophys. J., 28 (1999), No. 7, 533–551. [CrossRef] [PubMed] [Google Scholar]
  32. G.M. Ullmann, E.-W. Knapp, N.M. Kostic. Computational simulation and analysis of dynamic association between plastocyanin and cytochrome f. Consequences for the electron-transfer reaction. J. Amer. Chem. Soc., 119 (1997), 42–52. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.