Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 1, 2012
Cancer modeling
Page(s) 203 - 234
DOI https://doi.org/10.1051/mmnp/20127109
Published online 25 January 2012
  1. H. T. Alaoui, R. Yafia. Stability and Hopf bifurcation in an approachable haematopoietic stem cells model. Mathematical Biosciences, 206 (2007), 176–184. [CrossRef] [MathSciNet] [PubMed]
  2. M. Adimy, F. Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete and Continuous Dynamical Systems - Series B, 8 (2007), No. 1, 19–38. [CrossRef] [MathSciNet]
  3. M. Adimy, F. Crauste. Mathematical model of hematopoiesis dynamics with growth factor-dependent apoptosis and proliferation regulations. Mathematical and Computer Modelling, 49 (2009), No. 11–12, 2128–2137. [CrossRef] [MathSciNet]
  4. M. Adimy, F. Crauste, A. El Abdllaoui. Asymptotic behavior of a discrete maturity structured system of hematopoietic stem cell dynamics with several delays. Mathematical Modelling of Natural Phenomena, 1, (2006), No. 2, 1-19. [CrossRef] [EDP Sciences]
  5. M. Adimy, F. Crauste, A. El Abdllaoui. Discrete maturity-structured model of cell differentiation with applications to acute myelogenous leukemia. J. Biological Systems, 16 (2008), No. 3, 395–424. [CrossRef]
  6. M. Adimy, F. Crauste, A. El Abdllaoui. Boundedness and Lyapunov function for a nonlinear system of hematopoietic stem cell dynamics C. R. Acad. Sci. Paris, Ser. I, 348 (2010), No. 7-8, 373–377. [CrossRef]
  7. M. Adimy, F. Crauste, C. Marquet. Asymptotic behavior and stability switch for a mature-immature model of cell differentiation. Nonlinear Analysis : Real World Applications, 11 (2010), No. 4, 2913–2929. [CrossRef] [MathSciNet]
  8. M. Adimy, F. Crauste, S. Ruan. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math., 65 (2005), No. 4, 1328–1352. [CrossRef] [MathSciNet]
  9. M. Adimy, F. Crauste, S. Ruan. Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases. Bulletin of Mathematical Biology, 68 (2006), No. 8, 2321–2351. [CrossRef] [MathSciNet] [PubMed]
  10. P-A. Bliman. Extension of Popov absolute stability criterion to nonautonomous systems with delays. INRIA Technical Report 3625, February 1999.
  11. P-A. Bliman. Robust absolute stability of delay systems. Nonlinear Control in the Year 2000, A. Isidori, F. Lamnabhi-Lagarrigue, W. Respondek, eds., LNCIS vol. 258, Springer Verlag, 2000, 207–237.
  12. B. M. Boman, M. S. Wicha. Cancer stem cells : a step toward the cure. J. Clinical Oncology, 26 (2008), No. 17, 2795–2799. [CrossRef]
  13. D. Bonnet, J. E. Dick. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3 (1997), No. 7, 730–737. [CrossRef] [PubMed]
  14. N. G. Čebotarev, N. N. Meĭman. The Routh-Hurwitz problem for polynomials and entire functions. (in Russian) Trudy Mat. Inst. Steklov., 26 (1949), 3-331.
  15. C. Colijn, M. C. Mackey. A mathematical model of hematopoiesis : I. Periodic chronic myelogenous leukemia. J. Theoretical Biology, 237 (2005), No. 2, 117–132. [CrossRef] [PubMed]
  16. C. Corduneanu. Integral equations and stability of feedback systems. Academic Press, New York, 1973.
  17. R. F. Curtain, H. Logemann, O. Staffans. Stability results of Popov-type for infinite-dimensional systems with applications to integral control. Proc. London Math. Soc., 86 (2003), No. 3, 779–816. [CrossRef] [MathSciNet]
  18. C. A. Desoer, M. Vidyasagar. Feedback systems : input-output properties. SIAM Classics in Applied Mathematics, 55, SIAM, 2009.
  19. D. Dingli, F. Michor. Successful therapy must eradicate cancer stem cells. Stem Cells, 24 (2006), No. 12, 2603–2610. [CrossRef] [PubMed]
  20. D. Dingli, J. M. Pacheco. Modeling the architecture and dynamics of hematopoiesis. Wiley Interdisciplinary Reviews : Systems Biology and Medicine, 2 (2010), No. 2, 235–244. [CrossRef]
  21. R. C. Dorf, R. H. Bishop. Modern Control Systems (12th Edition). Pearson Educatiýn Inc., New Jersey, 2011.
  22. J. Dyson, R. Villella-Bressan, G. F. Webb. A singular transport equation modelling a proliferating maturity structured cell population. Canadian Applied Mathematics Quarterly, 4 (1996), No. 1, 65–95. [MathSciNet]
  23. P. Fortin, M. C. Mackey. Periodic chronic myelogenous leukemia : spectral analysis of blood counts and aetilogical implications. British Journal of Haematology, 104 (1999), No. 2, 336–345. [CrossRef] [PubMed]
  24. C. Foley, M.C. Mackey. Dynamic hematological disease : a review. J. Mathematical Biology, 58 (2009), No. 1-2, 285–322. [CrossRef] [MathSciNet] [PubMed]
  25. L. Grüne. Input-to-state dynamical stability and its Lyapunov function characterization. IEEE Trans. on Automatic Control, 47 (2002), No. 9, 1499–1504. [CrossRef]
  26. K. Gu. An improved stability criterion for systems with distributed delays. Int. J. Robust and Nonlinear Control, 13 (2003), No. 9, 819–831. [CrossRef]
  27. P. B. Gupta, C. L. Chaffer, R.A. Weinberg. Cancer stem cells : mirage or reality ? Nature Medicine, 15 (2009), No. 9, 1010–1012. [CrossRef] [PubMed]
  28. T. Haferlach. Molecular genetic pathways as therapeutic targets in acute myeloid leukemia. Hematology, American Society of Hematology Educational Program, (2008), No. 1, 400–411. [CrossRef]
  29. A. Halanay. Differential Equations, Stability, Oscillations, Time Lags. (in Romanian), Editura Academiei R.P.R., Bucharest, 1963, English version by Academic Press, 1966.
  30. C. Haurie, D. C. Dale, M. C. Mackey. Cyclical neutropenia and other periodic hematological diseases : A review of mechanisms and mathematical models. Blood, 92 (1998), No. 8, 2629–2640. [PubMed]
  31. K. J. Hope, L. Jin, J. E. Dick. Human acute myeloid leukemia stem cells. Archives of Medical Research, vol.34 (2003), No. 6, 507–514. [CrossRef] [PubMed]
  32. B. J. P. Huntly, D. G. Gilliland. Leukemia stem cells and the evolution of cancer-stem-cell research. Nature Reviews : Cancer, 5 (April 2005), 311–321. [CrossRef] [PubMed]
  33. M. E. King, J. Rowe. Recent developments in acute myelogenous leukemia therapy. The Oncologist, 12 (2007), Suppl. 2, 14–21. [PubMed]
  34. L. Kold-Andersen, M. C. Mackey. Resonance in periodic chemotherapy : A case study of acute myelogenous leukemia. J. Theoretical Biology, 209 (2001), No. 1, 113–130. [CrossRef] [PubMed]
  35. X. Lai, S. Nikolov, O. Wolkenhauer, J. Vera. A multi-level model accounting for the effects of JAK2-STAT5 signal modulation in erythropoiesis. Computational Biology and Chemistry, 33 (2009), No. 4, 312–324. [CrossRef] [PubMed]
  36. Z. Ling, Z. Lin. Traveling wavefront in a hematopoiesis model with time delay. Applied Mathematics Letters, 23 (2010), No. 4, 426–431. [CrossRef]
  37. M. C. Mackey, L. Glass. Oscillation and chaos in physiological control systems. Science, 197 (1977), No. 4300, 287–289. [CrossRef] [PubMed]
  38. M. C. Mackey. Unified hypothesis for the origin of aplastic anaemia and periodic hematopoiesis. Blood, 51 (1978), No. 5, 941–956. [PubMed]
  39. M. C. Mackey, C. Ou, L. Pujo-Menjouet, J. Wu. Periodic oscillations of blood cell populations in chronic myelogenous leukemia. SIAM J. Math. Anal., 38 (2006), No. 1, 166–187. [CrossRef] [MathSciNet]
  40. J. P. Marie. Private communication. Hôpital St. Antoine, Paris, France, July 2010.
  41. J. A. Martinez-Climent, L. Fontan, R. D. Gascoyne, R. Siebert, F. Prosper. Lymphoma stem cells : enough evidence to support their existence ? Haematologica, 95 (2010), No. 2, 293–302. [CrossRef] [PubMed]
  42. A. G. McKendrick. Applications of mathematics to medical problems. Proc. Edinburgh Math. Soc., 44 (1925), 98–130, DOI : 10.1017/S0013091500034428. [CrossRef]
  43. W. Michiels, S. Mondie, D. Roose, M. Dambrine. The effect of approximating distributed delay control laws on stability. Advances in time-delay systems, S-I. Niculescu, K. Gu, Eds., Springer-Verlag, LNCSE 38, 2004, 207–222.
  44. F. Michor, T. P. Hughes, Y. Iwasa, S. Branford, N. P. Shah, C. L. Sawyers, M. Nowak. Dynamics of chronic myeloid leukaemia. Nature, 435 (30 June 2005), 1267–1270. [CrossRef] [PubMed]
  45. C-I. Morarescu, S-I. Niculescu, W. Michiels. Asymptotic stability of some distributed delay systems : an algebraic approach. International Journal of Tomography & Statistics, 7 (2007), No. F07, 128–133. [MathSciNet]
  46. U. Münz, J. M. Rieber, F. Allgöwer. Robust stabilization and control of uncertain distributed delay systems. Topics in Time Delay Systems, J. J. Loiseau et al. Eds., LNCIS 388 (2009), 221–231.
  47. S. L. Noble, E. Sherer, R. E. Hannemann, D. Ramkrishna, T. Vik, A. E. Rundell. Using adaptive model predictive control to customize maintenance therapy chemotherapeutic dosing for childhood acute lymphoblastic leukemia. Journal of Theoretical Biology, 264 (2010), No. 3, 990–1002. [CrossRef] [PubMed]
  48. S-I. Niculescu, V. Ionescu, D. Ivanescu, L. Dugard, J-M. Dion. On generalized Popov theory for delay systems. Kybernetica, 36 (2000), No. 1, 2–20.
  49. S-I. Niculescu, P. S. Kim, K. Gu, P. P. Lee, D. Levy. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete and Continuous Dynamical Systems Series B, 13, (2010), No. 1, 129–156. [CrossRef]
  50. A. V. Oppenheim, A. S. Willsky, H. Nawab. Signals & Systems 2nd ed., Prentice Hall, New Jersey, 1997.
  51. H. Özbay. Introduction to feedback control theory. CRC Press LLC, Boca Raton FL, 2000.
  52. H. Özbay, C. Bonnet, J. Clairambault. Stability analysis of systems with distributed delays and application to hematopoietic cell maturation dynamics. Proc. of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, December 2008, 2050–2055.
  53. H. Özbay, H. Benjelloun, C. Bonnet, J. Clairambault. Stability conditions for a system modeling cell dynamics in leukemia. Preprints of IFAC Workshop on Time Delay Systems, TDS2010, Prague, Czech Republic, June 2010.
  54. D. Peixoto, D. Dingli, J.M. Pacheco. Modelling hematopoiesis in health and disease. Mathematical and Computer Modelling, 53 (2011), 7-8, 1546–1557. [CrossRef]
  55. B. Perthame. Transport equations in biology. Frontiers in Mathematics, Birkhäuser Verlag, 2007.
  56. V. M. Popov, A. Halanay. On stability for nonlinear systems with time delay. (in Russian), Automat. i Telemekhanika, 23 (1962), No. 7, 849–851.
  57. Y. Qu, J. Wei, S. Ruan. Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays. Physica D : Nonlinear Phenomena, 239 (2010), No. 20–22, 2011–2024. [CrossRef] [MathSciNet]
  58. V. Răsvan. Absolute stability of time lag control systems. (in Romanian) Editura Academiei, R.S.R., Bucharest, 1975 (Russian version by Nauka, Moscow, 1983).
  59. V. Răsvan. “Lost” cases in theory of stability for linear time-delay systems. Mathematical Reports, 9 (2007), No. 1, 99–110.
  60. J. Rowe. Why is clinical progress in acute myelogenous leukemia so slow ? Best Practice & Research Clinical Haematology., vol. 21 (2008), No. 1, 1–3. [CrossRef] [MathSciNet] [PubMed]
  61. N. J. Savill, W. Chadwick, S. E. Reece. Quantitative analysis of mechanisms that govern red blood cell age structure and dynamics during anaemia. PLoS Computational Biology, 5 (2009), doi :10.1371/journal.pcbi.1000416
  62. E. D. Sontag. The ISS philosophy as a unifying framework for stability-like behavior. Nonlinear Control in the Year 2000, vol.2, LNCIS 259 (2001), 443-467, DOI : 10.1007/BFb0110320.
  63. W. R. Sperr, A. W. Hauswirth, S. Florian, L. Öhler, K. Geissler, P. Valent. Human leukaemic stem cells : a novel target of therapy. European Journal of Clinical Investigation, 34, Suppl.2, (August 2004), 31–40. [CrossRef] [PubMed]
  64. E. I. Verriest. Stability of systems with distributed delays. Preprints of the IFAC Conference on System, Structure and Control, Nantes, France, July 1995, 294–299.
  65. E. I. Verriest. Linear Systems with Rational Distributed Delay : Reduction and Stability. Proc. of the 1999 European Control Conference, DA-12, Karlsruhe, Germany, September 1999.
  66. M. Vidyasagar. Nonlinear system analysis, 2nd Ed., SIAM Classics in Applied Mathematics, vol. 42, SIAM, Philadelphia 2002.
  67. M. Ważewska-Czyżewska, A. Lasota. Mathematical problems of the dynamics of a system of red blood cells. (in Polish) Matematyka Stosowana, 6 (1976), 23–40.
  68. A. Wan, J. Wei. Bifurcation analysis in an approachable haematopoietic stem cells model. J. Math. Anal. Appl., 345 (2008), No. 1, 276–285. [CrossRef]
  69. G-M. Zou. Cancer stem cells in leukemia, recent advances. Journal of Cellular Physiology, 213 (2007), No. 2, 440–444. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.