Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 1, 2012
Cancer modeling
Page(s) 203 - 234
DOI https://doi.org/10.1051/mmnp/20127109
Published online 25 January 2012
  1. H. T. Alaoui, R. Yafia. Stability and Hopf bifurcation in an approachable haematopoietic stem cells model. Mathematical Biosciences, 206 (2007), 176–184. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  2. M. Adimy, F. Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete and Continuous Dynamical Systems - Series B, 8 (2007), No. 1, 19–38. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Adimy, F. Crauste. Mathematical model of hematopoiesis dynamics with growth factor-dependent apoptosis and proliferation regulations. Mathematical and Computer Modelling, 49 (2009), No. 11–12, 2128–2137. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Adimy, F. Crauste, A. El Abdllaoui. Asymptotic behavior of a discrete maturity structured system of hematopoietic stem cell dynamics with several delays. Mathematical Modelling of Natural Phenomena, 1, (2006), No. 2, 1-19. [CrossRef] [EDP Sciences] [Google Scholar]
  5. M. Adimy, F. Crauste, A. El Abdllaoui. Discrete maturity-structured model of cell differentiation with applications to acute myelogenous leukemia. J. Biological Systems, 16 (2008), No. 3, 395–424. [CrossRef] [Google Scholar]
  6. M. Adimy, F. Crauste, A. El Abdllaoui. Boundedness and Lyapunov function for a nonlinear system of hematopoietic stem cell dynamics C. R. Acad. Sci. Paris, Ser. I, 348 (2010), No. 7-8, 373–377. [CrossRef] [Google Scholar]
  7. M. Adimy, F. Crauste, C. Marquet. Asymptotic behavior and stability switch for a mature-immature model of cell differentiation. Nonlinear Analysis : Real World Applications, 11 (2010), No. 4, 2913–2929. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Adimy, F. Crauste, S. Ruan. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math., 65 (2005), No. 4, 1328–1352. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Adimy, F. Crauste, S. Ruan. Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases. Bulletin of Mathematical Biology, 68 (2006), No. 8, 2321–2351. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. P-A. Bliman. Extension of Popov absolute stability criterion to nonautonomous systems with delays. INRIA Technical Report 3625, February 1999. [Google Scholar]
  11. P-A. Bliman. Robust absolute stability of delay systems. Nonlinear Control in the Year 2000, A. Isidori, F. Lamnabhi-Lagarrigue, W. Respondek, eds., LNCIS vol. 258, Springer Verlag, 2000, 207–237. [Google Scholar]
  12. B. M. Boman, M. S. Wicha. Cancer stem cells : a step toward the cure. J. Clinical Oncology, 26 (2008), No. 17, 2795–2799. [CrossRef] [Google Scholar]
  13. D. Bonnet, J. E. Dick. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3 (1997), No. 7, 730–737. [CrossRef] [PubMed] [Google Scholar]
  14. N. G. Čebotarev, N. N. Meĭman. The Routh-Hurwitz problem for polynomials and entire functions. (in Russian) Trudy Mat. Inst. Steklov., 26 (1949), 3-331. [Google Scholar]
  15. C. Colijn, M. C. Mackey. A mathematical model of hematopoiesis : I. Periodic chronic myelogenous leukemia. J. Theoretical Biology, 237 (2005), No. 2, 117–132. [CrossRef] [PubMed] [Google Scholar]
  16. C. Corduneanu. Integral equations and stability of feedback systems. Academic Press, New York, 1973. [Google Scholar]
  17. R. F. Curtain, H. Logemann, O. Staffans. Stability results of Popov-type for infinite-dimensional systems with applications to integral control. Proc. London Math. Soc., 86 (2003), No. 3, 779–816. [CrossRef] [MathSciNet] [Google Scholar]
  18. C. A. Desoer, M. Vidyasagar. Feedback systems : input-output properties. SIAM Classics in Applied Mathematics, 55, SIAM, 2009. [Google Scholar]
  19. D. Dingli, F. Michor. Successful therapy must eradicate cancer stem cells. Stem Cells, 24 (2006), No. 12, 2603–2610. [CrossRef] [PubMed] [Google Scholar]
  20. D. Dingli, J. M. Pacheco. Modeling the architecture and dynamics of hematopoiesis. Wiley Interdisciplinary Reviews : Systems Biology and Medicine, 2 (2010), No. 2, 235–244. [CrossRef] [Google Scholar]
  21. R. C. Dorf, R. H. Bishop. Modern Control Systems (12th Edition). Pearson Educatiýn Inc., New Jersey, 2011. [Google Scholar]
  22. J. Dyson, R. Villella-Bressan, G. F. Webb. A singular transport equation modelling a proliferating maturity structured cell population. Canadian Applied Mathematics Quarterly, 4 (1996), No. 1, 65–95. [MathSciNet] [Google Scholar]
  23. P. Fortin, M. C. Mackey. Periodic chronic myelogenous leukemia : spectral analysis of blood counts and aetilogical implications. British Journal of Haematology, 104 (1999), No. 2, 336–345. [CrossRef] [PubMed] [Google Scholar]
  24. C. Foley, M.C. Mackey. Dynamic hematological disease : a review. J. Mathematical Biology, 58 (2009), No. 1-2, 285–322. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  25. L. Grüne. Input-to-state dynamical stability and its Lyapunov function characterization. IEEE Trans. on Automatic Control, 47 (2002), No. 9, 1499–1504. [CrossRef] [Google Scholar]
  26. K. Gu. An improved stability criterion for systems with distributed delays. Int. J. Robust and Nonlinear Control, 13 (2003), No. 9, 819–831. [CrossRef] [Google Scholar]
  27. P. B. Gupta, C. L. Chaffer, R.A. Weinberg. Cancer stem cells : mirage or reality ? Nature Medicine, 15 (2009), No. 9, 1010–1012. [CrossRef] [PubMed] [Google Scholar]
  28. T. Haferlach. Molecular genetic pathways as therapeutic targets in acute myeloid leukemia. Hematology, American Society of Hematology Educational Program, (2008), No. 1, 400–411. [CrossRef] [Google Scholar]
  29. A. Halanay. Differential Equations, Stability, Oscillations, Time Lags. (in Romanian), Editura Academiei R.P.R., Bucharest, 1963, English version by Academic Press, 1966. [Google Scholar]
  30. C. Haurie, D. C. Dale, M. C. Mackey. Cyclical neutropenia and other periodic hematological diseases : A review of mechanisms and mathematical models. Blood, 92 (1998), No. 8, 2629–2640. [PubMed] [Google Scholar]
  31. K. J. Hope, L. Jin, J. E. Dick. Human acute myeloid leukemia stem cells. Archives of Medical Research, vol.34 (2003), No. 6, 507–514. [CrossRef] [PubMed] [Google Scholar]
  32. B. J. P. Huntly, D. G. Gilliland. Leukemia stem cells and the evolution of cancer-stem-cell research. Nature Reviews : Cancer, 5 (April 2005), 311–321. [CrossRef] [PubMed] [Google Scholar]
  33. M. E. King, J. Rowe. Recent developments in acute myelogenous leukemia therapy. The Oncologist, 12 (2007), Suppl. 2, 14–21. [PubMed] [Google Scholar]
  34. L. Kold-Andersen, M. C. Mackey. Resonance in periodic chemotherapy : A case study of acute myelogenous leukemia. J. Theoretical Biology, 209 (2001), No. 1, 113–130. [CrossRef] [PubMed] [Google Scholar]
  35. X. Lai, S. Nikolov, O. Wolkenhauer, J. Vera. A multi-level model accounting for the effects of JAK2-STAT5 signal modulation in erythropoiesis. Computational Biology and Chemistry, 33 (2009), No. 4, 312–324. [CrossRef] [PubMed] [Google Scholar]
  36. Z. Ling, Z. Lin. Traveling wavefront in a hematopoiesis model with time delay. Applied Mathematics Letters, 23 (2010), No. 4, 426–431. [CrossRef] [Google Scholar]
  37. M. C. Mackey, L. Glass. Oscillation and chaos in physiological control systems. Science, 197 (1977), No. 4300, 287–289. [CrossRef] [PubMed] [Google Scholar]
  38. M. C. Mackey. Unified hypothesis for the origin of aplastic anaemia and periodic hematopoiesis. Blood, 51 (1978), No. 5, 941–956. [PubMed] [Google Scholar]
  39. M. C. Mackey, C. Ou, L. Pujo-Menjouet, J. Wu. Periodic oscillations of blood cell populations in chronic myelogenous leukemia. SIAM J. Math. Anal., 38 (2006), No. 1, 166–187. [CrossRef] [MathSciNet] [Google Scholar]
  40. J. P. Marie. Private communication. Hôpital St. Antoine, Paris, France, July 2010. [Google Scholar]
  41. J. A. Martinez-Climent, L. Fontan, R. D. Gascoyne, R. Siebert, F. Prosper. Lymphoma stem cells : enough evidence to support their existence ? Haematologica, 95 (2010), No. 2, 293–302. [CrossRef] [PubMed] [Google Scholar]
  42. A. G. McKendrick. Applications of mathematics to medical problems. Proc. Edinburgh Math. Soc., 44 (1925), 98–130, DOI : 10.1017/S0013091500034428. [CrossRef] [Google Scholar]
  43. W. Michiels, S. Mondie, D. Roose, M. Dambrine. The effect of approximating distributed delay control laws on stability. Advances in time-delay systems, S-I. Niculescu, K. Gu, Eds., Springer-Verlag, LNCSE 38, 2004, 207–222. [Google Scholar]
  44. F. Michor, T. P. Hughes, Y. Iwasa, S. Branford, N. P. Shah, C. L. Sawyers, M. Nowak. Dynamics of chronic myeloid leukaemia. Nature, 435 (30 June 2005), 1267–1270. [CrossRef] [PubMed] [Google Scholar]
  45. C-I. Morarescu, S-I. Niculescu, W. Michiels. Asymptotic stability of some distributed delay systems : an algebraic approach. International Journal of Tomography & Statistics, 7 (2007), No. F07, 128–133. [MathSciNet] [Google Scholar]
  46. U. Münz, J. M. Rieber, F. Allgöwer. Robust stabilization and control of uncertain distributed delay systems. Topics in Time Delay Systems, J. J. Loiseau et al. Eds., LNCIS 388 (2009), 221–231. [Google Scholar]
  47. S. L. Noble, E. Sherer, R. E. Hannemann, D. Ramkrishna, T. Vik, A. E. Rundell. Using adaptive model predictive control to customize maintenance therapy chemotherapeutic dosing for childhood acute lymphoblastic leukemia. Journal of Theoretical Biology, 264 (2010), No. 3, 990–1002. [CrossRef] [PubMed] [Google Scholar]
  48. S-I. Niculescu, V. Ionescu, D. Ivanescu, L. Dugard, J-M. Dion. On generalized Popov theory for delay systems. Kybernetica, 36 (2000), No. 1, 2–20. [Google Scholar]
  49. S-I. Niculescu, P. S. Kim, K. Gu, P. P. Lee, D. Levy. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete and Continuous Dynamical Systems Series B, 13, (2010), No. 1, 129–156. [CrossRef] [Google Scholar]
  50. A. V. Oppenheim, A. S. Willsky, H. Nawab. Signals & Systems 2nd ed., Prentice Hall, New Jersey, 1997. [Google Scholar]
  51. H. Özbay. Introduction to feedback control theory. CRC Press LLC, Boca Raton FL, 2000. [Google Scholar]
  52. H. Özbay, C. Bonnet, J. Clairambault. Stability analysis of systems with distributed delays and application to hematopoietic cell maturation dynamics. Proc. of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, December 2008, 2050–2055. [Google Scholar]
  53. H. Özbay, H. Benjelloun, C. Bonnet, J. Clairambault. Stability conditions for a system modeling cell dynamics in leukemia. Preprints of IFAC Workshop on Time Delay Systems, TDS2010, Prague, Czech Republic, June 2010. [Google Scholar]
  54. D. Peixoto, D. Dingli, J.M. Pacheco. Modelling hematopoiesis in health and disease. Mathematical and Computer Modelling, 53 (2011), 7-8, 1546–1557. [CrossRef] [Google Scholar]
  55. B. Perthame. Transport equations in biology. Frontiers in Mathematics, Birkhäuser Verlag, 2007. [Google Scholar]
  56. V. M. Popov, A. Halanay. On stability for nonlinear systems with time delay. (in Russian), Automat. i Telemekhanika, 23 (1962), No. 7, 849–851. [Google Scholar]
  57. Y. Qu, J. Wei, S. Ruan. Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays. Physica D : Nonlinear Phenomena, 239 (2010), No. 20–22, 2011–2024. [CrossRef] [MathSciNet] [Google Scholar]
  58. V. Răsvan. Absolute stability of time lag control systems. (in Romanian) Editura Academiei, R.S.R., Bucharest, 1975 (Russian version by Nauka, Moscow, 1983). [Google Scholar]
  59. V. Răsvan. “Lost” cases in theory of stability for linear time-delay systems. Mathematical Reports, 9 (2007), No. 1, 99–110. [Google Scholar]
  60. J. Rowe. Why is clinical progress in acute myelogenous leukemia so slow ? Best Practice & Research Clinical Haematology., vol. 21 (2008), No. 1, 1–3. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  61. N. J. Savill, W. Chadwick, S. E. Reece. Quantitative analysis of mechanisms that govern red blood cell age structure and dynamics during anaemia. PLoS Computational Biology, 5 (2009), doi :10.1371/journal.pcbi.1000416 [Google Scholar]
  62. E. D. Sontag. The ISS philosophy as a unifying framework for stability-like behavior. Nonlinear Control in the Year 2000, vol.2, LNCIS 259 (2001), 443-467, DOI : 10.1007/BFb0110320. [Google Scholar]
  63. W. R. Sperr, A. W. Hauswirth, S. Florian, L. Öhler, K. Geissler, P. Valent. Human leukaemic stem cells : a novel target of therapy. European Journal of Clinical Investigation, 34, Suppl.2, (August 2004), 31–40. [CrossRef] [PubMed] [Google Scholar]
  64. E. I. Verriest. Stability of systems with distributed delays. Preprints of the IFAC Conference on System, Structure and Control, Nantes, France, July 1995, 294–299. [Google Scholar]
  65. E. I. Verriest. Linear Systems with Rational Distributed Delay : Reduction and Stability. Proc. of the 1999 European Control Conference, DA-12, Karlsruhe, Germany, September 1999. [Google Scholar]
  66. M. Vidyasagar. Nonlinear system analysis, 2nd Ed., SIAM Classics in Applied Mathematics, vol. 42, SIAM, Philadelphia 2002. [Google Scholar]
  67. M. Ważewska-Czyżewska, A. Lasota. Mathematical problems of the dynamics of a system of red blood cells. (in Polish) Matematyka Stosowana, 6 (1976), 23–40. [Google Scholar]
  68. A. Wan, J. Wei. Bifurcation analysis in an approachable haematopoietic stem cells model. J. Math. Anal. Appl., 345 (2008), No. 1, 276–285. [CrossRef] [Google Scholar]
  69. G-M. Zou. Cancer stem cells in leukemia, recent advances. Journal of Cellular Physiology, 213 (2007), No. 2, 440–444. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.