Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 1, 2012
Cancer modeling
Page(s) 235 - 244
Published online 25 January 2012
  1. L.H. Abbott, F. Michor. Mathematical models of targeted cancer therapy. British Journal of Cancer 95 (2006), 1136–1141. [CrossRef] [PubMed] [Google Scholar]
  2. M. Adimy, F. Crauste, A. Halanay, M. Neamţu, D. Opriş. Stability of Limit Cycles in a Pluripotent Stem Cell Dynamics Model. Chaos, Solitons&Fractals, 27(4) (2006), 1091–1107. [Google Scholar]
  3. M. Adimy, F. Crauste, S. Ruan. A mathematical study of the hematopoiesis process with application to chronic myelogenous leukemia. SIAM J. Appl. Math. 65(4) (2005), 1328–1352. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Adimy, F. Crauste, S. Ruan. Periodic oscillations in leukopoiesis models with two delays. Journal of Theoretical Biology 242 (2006), 288-299. [Google Scholar]
  5. S. Bernard, J. Belair, M.C. Mackey. Oscillations in cyclical neutropenia : new evidence based on mathematical modelling. J. Theor. Biology 223 (2003), 283–298. [Google Scholar]
  6. B. Clarkson, A. Strife, D. Wisniewski, U. Lambek, C. Liu. Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Leukemia 17 (2003), 1211–1262. [CrossRef] [PubMed] [Google Scholar]
  7. C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis I-Periodic chronic myelogenous leukemia. J. Theor. Biology 237 (2005), 117–132. [Google Scholar]
  8. Aristide Halanay, Differential Equations : stability, oscilations, time lags. Academic Press, 1966. [Google Scholar]
  9. A. Halanay. Periodic Solutions in Mathematical Models for Hematological Diseases under Treatment. IEEE Proceedings of the 8-th IFAC Workshop on Time-Delay Systems, Sept. 1-3, Sinaia, Romania, 2009. [Google Scholar]
  10. A. Halanay. Stability analysis for a mathematical model of chemotherapy action in hematological diseases. Bull. Sci. Soc. Roumaine Sci. Math. 53 (101) (2010), no. 1, 3-10. [Google Scholar]
  11. A. Halanay. Treatment induced periodic solutions in some mathematical models of tumoral cell dynamics. Mathematical Reports !2(62) (2010), no. 4, in press. [Google Scholar]
  12. J. Hale. Theory of Functional Differential Equations. Springer, New York, 1977. [Google Scholar]
  13. V. Kolmanovskii, A. Myshkis. Applied Theory of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht, 1992. [Google Scholar]
  14. M.A. Krasnoselskii. Shift operator on orbits of differential equations. Nauka, Moskow, 1966 (in Russian). [Google Scholar]
  15. M.C. Mackey, A unified hypothesis of the origin of aplastic anemia and periodic hematopoiesis, Blood 51 (1978), 941–956. [PubMed] [Google Scholar]
  16. M.C. Mackey, C. Ou, L. Pujo-Menjouet, J. Wu. Periodic oscillations of blood cell population in chronic myelogenous leukemia. SIAM J. Math. Anal. 38 (2006), 166–187. [CrossRef] [MathSciNet] [Google Scholar]
  17. F. Michor, T. Hughes, Y. Iwasa, S. Branford, N.P. Shah, C. Sawyers, M. Novak. Dynamics of chronic myeloid leukemia. Nature 435 (2005), 1267–1270. [CrossRef] [PubMed] [Google Scholar]
  18. H. Moore, N.K. Li. A mathematical model for chronic myelogenous leukemia (CML) and T-cell interaction. J. Theor. Biol. 227 (2004), 513–523. [CrossRef] [PubMed] [Google Scholar]
  19. L. Pujo-Menjouet, C. Mackey. Contribution to the study of periodic chronic myelogenous leukemia. Comptes Rendus Biol, 327 (2004), 235–244. [Google Scholar]
  20. C. Sawyers. Chronic Myeloid Leukemia. N. Engl. J. Med. 340 (2000), 1330–1340. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.