Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 1, 2012
Cancer modeling
Page(s) 245 - 260
DOI https://doi.org/10.1051/mmnp/20127111
Published online 25 January 2012
  1. A. Marciniak-Czochra, M. Kimmel. Reaction-difusion model of early carcinogenesis : The effects of influx of mutated cells. Mathematical Modelling of Natural Phenomena, 3 (2008), No. 7, 90–114. [CrossRef] [Google Scholar]
  2. A. Marciniak-Czochra, M. Kimmel. Dynamics of growth and signaling along linear and surface structures in very early tumors. Computational & Mathematical Methods in Medicine, 7 (2006), No. 2/3, 189–213. [CrossRef] [Google Scholar]
  3. A. Marciniak-Czochra, M. Kimmel. Modelling of early lung cancer progression : Influence of growth factor production and cooperation between partially transformed cells. Math. Mod. Meth. Appl. Sci., 17S (2007), 1693–1719. [CrossRef] [Google Scholar]
  4. A. Marciniak-Czochra, M. Kimmel. Reaction–diffusion approach to modeling of the spread of early tumors along linear or tubular structures. Journal of Theoretical Biology, 244 (2006), No. 3, 375–387. [CrossRef] [PubMed] [Google Scholar]
  5. A. Marciniak-Czochra, M. Ptashnyk. Derivation of a macroscopic receptor-based model using homogenization techniques. SIAM J. Math. Anal., 40 (2008), No. 1, 215–237. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Marciniak-Czochra, G. Karch, K. Suzuki. Unstable patterns in reaction-diffusion model of early carcinogenesis. arXiv :1104.3592v1, (2011). [Google Scholar]
  7. R. Bertolusso. Computational models of signaling processes in cells with applications : Influence of stochastic and spatial effects. PhD thesis (2011), Rice University, Houston, TX. [Google Scholar]
  8. R. Erban, S. J. Chapman, P. Maini. A practical guide to stochastic simulations of reaction-diffusion processes. ArXiv e-prints, (2007), April. [Google Scholar]
  9. S. A. Isaacson, C. S. Peskin. Incorporating diffusion in complex geometries into stochastic chemical kinetics simulations. SIAM J. Scientific Computing, 28 (2006), No. 1, 47–74. [CrossRef] [Google Scholar]
  10. A. Slepoy, A. P. Thompson, S. J. Plimpton. A constant-time kinetic monte carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys., 128 (2008), May, 205101. [CrossRef] [PubMed] [Google Scholar]
  11. J. Paulsson, O. G. Berg, M. Ehrenberg. Stochastic focusing : fluctuation-enhanced sensitivity of intracellular regulation. Proc. Natl. Acad. Sci. U.S.A., 97 (2000), June, 7148–53. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.