Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 1, 2012
Cancer modeling
Page(s) 261 - 278
DOI https://doi.org/10.1051/mmnp/20127112
Published online 25 January 2012
  1. I. Athanassios, D. Barbolosi. Optimizing drug regimens in cancer chemotherapy by an efficacy-toxicity mathematical model. Compu. Biomedical Res., 33 (2000), 211–226. [CrossRef] [PubMed] [Google Scholar]
  2. M. Chaplain, A. Matzavinos. Mathematical modelling of spatio-temporal phenomena in tumour immunology tutorials in mathematical biosciences III. Cell Cycle, Proliferation, and Cancer, (2006), 131–183. [Google Scholar]
  3. W. Cheney, D. Kincaid. Numerical mathematics and computing. Thomson Brooks/Cole, Belmont, 2008. [Google Scholar]
  4. C. Collins, K. R. Fister, M. Williams. Optimal control of a cancer cell model with delay. Math. Model. Nat. Phen., 5 (2010), No. 3, 63–71. [CrossRef] [EDP Sciences] [Google Scholar]
  5. P. C. Das, R. R. Sharma. On optimal controls for measure delay-differential equations. SIAM J. Control, 6 (1971), No. 1, 43–61. [CrossRef] [Google Scholar]
  6. L. G. dePillis, A. E. Radunskaya. A mathematical tumor model with immune resistance and drug therapy : an optimal control approach. J. Theoretical Medicine, 3 (2001), 79–100. [Google Scholar]
  7. L. G. dePillis, A. E. Radunskaya. The dynamics of an optimally controlled tumor model : a case study. Math. Comp. Model., 37 (2003), No. 11, 1221–1244. [Google Scholar]
  8. L. G. dePillis, A. E. Radunskaya, C. L. Wiseman. A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Research, 61 (2005), No. 17, 7950–7958. [Google Scholar]
  9. L. G. dePillis, K. R. Fister, W. Gu, C. Collins, M. Daub, J. Moore, B. Preskill. Mathematical model creation for cancer chemo-immunotherapy. Computational and Math. Methods in Medicine, 10 (2009), No. 3, 165–184. [CrossRef] [MathSciNet] [Google Scholar]
  10. R. D. Driver. Ordinary and delay differential equations. Springer-Verlag, New York, 1977. [Google Scholar]
  11. R. Fletcher. Practical methods of optimization. Wiley and Sons, New York, 1987. [Google Scholar]
  12. W. Lu, T. Hillen, H. I. Freedman. A mathematical model for M-phase specific chemotherapy including the Go-phase and immunoresponse. Math. Biosci. and Engng., 4 (2007), No. 2, 239–259. [CrossRef] [Google Scholar]
  13. M.I. Kamien, N. L. Schwartz. Dynamic optimization : the calculus of variations and optimal control in economics and management, Advanced Textbooks in Economics. North-Holland, 1991. [Google Scholar]
  14. M. Kim, S. Perry, K. B. Woo. Quantitative approach to the design of antitumor drug dosage schedule via cell cycle kinetics and systems theory. Ann. Biomed. Engng, 5 (1977), 12–33. [CrossRef] [PubMed] [Google Scholar]
  15. D. Kirschner, J. C. Panetta. Modeling immunotherapy of the tumor-immune interaction. J. Math. Bio., 35 (1998), 235–252. [Google Scholar]
  16. U. Ledzewicz, T. Brown, H. Schattler. Comparison of optimal controls for a model in cancer chemotherapy with l1 and l2 type objectives. Optimization Methods and Software, 19 (2004), No. 3-4, 339–350. [CrossRef] [MathSciNet] [Google Scholar]
  17. U. Ledzewicz, H. Schattler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete and Continuous Dynamical Systems - Series B, 6 (2006), No. 1, 129–150. [MathSciNet] [Google Scholar]
  18. D. McKenzie. Mathematical modeling and cancer. SIAM News, 31 (2004), 1–2. [Google Scholar]
  19. J. M. Murray. Some optimality control problems in cancer chemotherapy with a toxicity limit. Math. Biosci., 100 (1990), 49–67. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko. The mathematical theory of optimal processes. Gordon and Breach, 1962. [Google Scholar]
  21. G. W. Swan, T. L. Vincent. Optimal control analysis in the chemotherapy of IgG multiple myeloma. Bull. of Math. Bio., 39 (1977), 317–337. [Google Scholar]
  22. A. Swierniak, U. Ledzewicz, H. Schattler. Optimal control for a class of compartmental models in cancer chemotherapy. Int. J. Appl. Math. Comput. Sci., 13 (2003), No. 3, 357–368. [MathSciNet] [Google Scholar]
  23. M. Villasana A. Radunskaya. A delay differential equation model for tumor growth. J. Math. Bio., 47 (2003), 270–294. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.