Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 1, 2012
Cancer modeling
Page(s) 29 - 48
Published online 25 January 2012
  1. V.C. Abraham, V. Krishnamurthi, D.L. Taylor, F. Lanni. The actin-based nanomachine at the leading edge of migrating cells. Biophys. J., 77 (1999), No. 3, 1721–1732. [CrossRef] [PubMed]
  2. O. Ali, H. Guillou, O. Destaing, C. Albiges-Rizo, M.R. Block, B. Fourcade. Cooperativity between integrin activation and mechanical stress leads to integrin clustering. Biophys. J., 100 (2011), No. 11, 2595–2604. [CrossRef] [PubMed]
  3. M. Amano, K. Chihara, K. Kimura, Y. Fukata, N. Nakamura, Y. Matsuura, K. Kaibuchi. Formation of actin stress fibers and focal adhesions enhanced by rho-kinase. Science, 297 (1997), No. 5304, 1308–1311. [CrossRef]
  4. R. Ananthakrishnan, A. Ehrlicher. The force behind cell movement. Int. J. Biol. Sci., 3 (2007), No. 5, 303–317. [CrossRef] [PubMed]
  5. A.L. Berrier, K.M. Yamada. Cell-matrix adhesion. J. Cell. Physiol., 213 (2007), No. 3, 565–573. [CrossRef] [PubMed]
  6. B. Butler, C. Gao, A.T. Mersich, S.D. Blystone. Purified integrin adhesion complexes exhibit actin-polymerization activity. Curr. Biol., 16 (2006), No. 3, 242–251. [CrossRef] [PubMed]
  7. L.L. Chen, A. Whitty, R.R. Lobb, S.P. Adams, R.B. Pepinsky. Multiple activation states of integrin α4 β1 detected through their different affinities for a small molecule ligand. J. Biol. Chem., 274 (1999), No. 19, 13167–13175. [CrossRef] [PubMed]
  8. D. Choquet, D.P. Felsenfeld, M.P. Sheetz. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell, 88 (1997), No. 1, 39–48. [CrossRef] [PubMed]
  9. C. Cluzel, F. Saltel, J. Lussi, F. Paulhe, B.A. Imhof, B. Wehrle-Haller. The mechanisms and dynamics of αvβ3 integrin clustering in living cells. J. Cell. Biol., 171 (2005), No. 2, 383–392. [CrossRef] [PubMed]
  10. B. Cseh, S. Fernandez-Sauze, D. Grall, S. Schaub, E. Doma, E. van Obberghen-Schilling. Autocrine fibronectin directs matrix assembly and crosstalk between cell-matrix and cell-cell adhesion in vascular endothelial cells. J. Cell Sci., 123 (2010), No. 22, 3989–3999. [CrossRef] [PubMed]
  11. P.A. DiMilla, K. Barbee, D.A. Lauffenburger. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J., 60 (1991), No. 1, 15–37. [CrossRef] [PubMed]
  12. G.J. Doherty, M.K. Ahlund, M.T. Howes, B. Moren, R.G. Parton, H.T. McMahon, R. Lundmark. The endocytic protein GRAF1 is directed to cell-matrix adhesion sites and regulates cell spreading. Mol. Biol. Cell, 22 (2011), No. 22, 4380–4389. [CrossRef] [PubMed]
  13. P. Friedl, K. Wolf. Tumour-cell invasion and migration : diversity and escape mechanisms. Nat. Rev. Cancer, 3 (2003), No. 5, 362–374. [CrossRef] [PubMed]
  14. M. Fussenegger, J.E. Bailey, J. Varner. A mathematical model of caspase function in apoptosis. Nat. Biotechnol., 18 (2000), 768–774. [CrossRef] [PubMed]
  15. N.D. Gallant, K.E. Michael, A.J. García. Cell adhesion strengthening : contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol. Biol. Cell, 16 (2005), No. 9, 4329–4340. [CrossRef] [PubMed]
  16. A.J. García, D. Boettiger. Integrin-fibronectin interactions at the cell-material interface : initial integrin binding and signaling. Biomaterials, 20 (1999), No. 23–24, 2427–2433. [CrossRef] [PubMed]
  17. A.J. García, F. Huber, D. Boettiger. Force required to break α5β1 integrin-fibronectin bonds in intact adherent cells is sensitive to integrin activation state. J. Biol. Chem., 273 (1998), No. 18, 10988–10993. [CrossRef] [PubMed]
  18. F.G. Giancotti, E. Ruoslahti. Integrin signaling. Science, 285 (1999), No. 5430, 1028–1032. [CrossRef] [PubMed]
  19. M.Z. Gilcrease, X. Zhou, K. Welch. Adhesion-independent α6β4 integrin clustering is mediated by phosphatidylinositol 3-kinase. Cancer Res., 64 (2004), 7395. [CrossRef] [PubMed]
  20. W.H. Guo, Y.L. Wang. Retrograde fluxes of focal adhesion proteins in response to cell migration and mechanical signals. Mol. Biol. Cell, 18 (2007), No. 11, 4519–4527. [CrossRef] [PubMed]
  21. D.A. Hammer, D.A. Lauffenburger. A dynamical model for receptor-mediated cell adhesion to surfaces. Biophys. J., 53 (1987), No. 3, 475–487. [CrossRef]
  22. R.O. Hynes. Integrins : bidirectional, allosteric signaling machines. Cell, 110 (2002), No. 6, 673–687. [CrossRef] [PubMed]
  23. K. Kawakami, H. Tatsumi, M. Sokabe. Dynamics of integrin clustering at focal contacts of endothelial cells studied by multimode imaging microscopy. J. Cell Sci., 114 (2001), No. 17, 3125–3135. [PubMed]
  24. P. Koistinen, J. Heino. Integrins in cancer cell invasion. Cell invasion. Landes Bioscience, 2002.
  25. Z.H. Li, M. Kreiner, C.F. van der Walle, H.J. Mardon. Clustered integrin alpha-5-beta-1 ligand displays model fibronectin-mediated adhesion of human endometrial stromal cells. Biochem. Biophys. Res. Comm., 407 (2011), No. 4, 777–782. [CrossRef]
  26. L.M. Machesky, A. Hall. Role of actin polymerization and adhesion to extracellular matrix in Rac-and Rho-induced cytoskeletal reorganization. J. Cell. Biol., 138 (1997), No. 4, 913–926. [CrossRef] [PubMed]
  27. A. Mallavarapu, T. Mitchison. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. Cell. Biol., 146 (1999), No. 5, 1097–1106. [CrossRef] [PubMed]
  28. M. Martini, A. Gnann, D. Scheiki, B. Holzmann, K.P. Janssen. The candidate tumor suppressor SASH1 interacts with the actin cytoskeleton and stimulates cell-matrix adhesion. Int. J. Biochem. Cell. Biol., 43 (2011), No. 11, 1630–1640. [CrossRef] [MathSciNet] [PubMed]
  29. E. Monaghan, V. Gueorguiev, C. Wilkins-Port. The receptor for urokinase-type plasminogen activator regulates fibronectin matrix assembly in human skin fibroblasts. J. Biol. Chem., 279 (2004), No. 2, 1400–1407. [CrossRef] [PubMed]
  30. F.A. Moretti, A.K. Chauhan, A. Iaconcig, F. Porro, F.E. Baralle, A.F. Muro. A major fraction of fibronectin present in the extracellular matrix of tissues is plasma-derived. J. Biol. Chem., 282 (2007), No. 38, 28057–28062. [CrossRef] [PubMed]
  31. S. Niland, J.A. Eble. Integrin-mediated cell-matrix interaction in physiological and pathological blood vessel formation. J. Oncol., (2012), Epub 2011 Sep 18, 125278.
  32. T. Nishizaka, Q. Shi, M.P. Sheetz. Position-dependent linkages of fibronectin-integrin-cytoskeleton. PNAS, 97 (2000), No. 2, 692–697. [CrossRef]
  33. M. Ojaniemi, K. Vuori. Epidermal growth factor modulates tyrosine phosphorylation of p130Cas. Involvement of phophatidylinositol 3’-kinase and actin cytoskeleton. J. Biol. Chem., 272 (1997), No. 41, 25993–25998. [CrossRef] [PubMed]
  34. T. Osada, Y.H. Gu, M. Kanazawa, Y. Tsubota, B.T. Hawkins, M. Spatz, R. Milner, G.J. del Zoppo. Interendothelial claudin-5 expression depends on cerebral endothelial cell-matrix adhesion by beta(1)-integrins. J. Cereb. Blood Flow Metab., 31 (2011), No. 10, 1972–1985. [CrossRef] [PubMed]
  35. S.P. Palecek, A.F. Horwitz, D.A. Lauffenburger. Kinetic model for integrin-mediated adhesion release during cell migration. Ann. Biomed. Eng., 27 (1999), No. 2, 219–235. [CrossRef] [PubMed]
  36. S.P. Palecek, A. Huttenlocher, A.F. Horwitz, D.A. Lauffenburger. Physical and biochemical regulation of integrin release during rear detachment of migrating cells. J. Cell Sci., 111 (1998), 929–940. [PubMed]
  37. S.P. Palecek, J.C. Loftus, M.H. Ginsberg, D.A. Lauffenburger, A.F. Horwitz. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature, 385 (1997), No. 6616, 537–540. [CrossRef] [PubMed]
  38. R. Pankov, K.M. Yamada. Fibronectin at a glance. J. Cell Sci., 115 (2002), No. 20, 3861–3863. [CrossRef] [PubMed]
  39. M.J. Paszek, D. Boettiger, V.M. Weaver, D.A. Hammer. Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate. PLoS Comput. Biol., 5 (2009), No. 12, e1000604. [CrossRef] [PubMed]
  40. T.D. Pollard, M.S. Mooseker. Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores. J. Cell Biol., 88 (1981), No. 3, 654–659. [CrossRef] [PubMed]
  41. C.M. Regen, A.F. Horwitz. Dynamics of β1 integrin-mediated adhesive contacts in motile fibroblasts. J. Cell Biol., 119 (1992), No. 5, 1347–1359. [CrossRef] [PubMed]
  42. S. Roy, L. Bingle, J.F. Marshall, R. Bass, V. Ellis, P.M. Speight, S.A. Whawell. The role of alpha 9 beta 1 integrin in modulating epithelial cell behaviour. J. Oral Pathol., 40 (2011), No. 10, 755–761. [CrossRef]
  43. H. Schmidt, M. Jirstrand. Systems Biology Toolbox for MATLAB : a computational platform for research in systems biology. Bioinformatics, 22 (2006), No. 4, 514–515. [CrossRef] [PubMed]
  44. J.L. Sechler, Y. Takada, J.E. Schwarzbauer. Altered rate of fibronectin matrix assembly by deletion of the first type III repeats. J. Cell Biol., 134 (1996), No. 2, 573–583. [CrossRef] [PubMed]
  45. D.S. Spassov, C.H. Wong, N. Sergina, D. Ahuja, M. Fried, D. Sheppard, M.M. Moasser. Phosphorylation of trask by src kinases inhibits integrin clustering and functions in exclusion with focal adhesion signaling. Mol. Cell. Biol., 31 (2011), No. 4, 766–782. [CrossRef] [PubMed]
  46. Y. Takada, X. Ye, S. Simon. The integrins. Genome Biol., 8 (2007), No. 5, 215. [CrossRef] [PubMed]
  47. J.W. Tamkun, R.O. Hynes. Plasma fibronectin is synthesized and secreted by hepatocytes. J. Biol. Chem., 258 (1983), No. 7, 4641–4647. [PubMed]
  48. M. Waldeck-Weiermair, C. Zoratti, K. Osibow, N. Balenga, E. Goessnitzer, M. Waldhoer, R. Malli, W.F. Graier. Integrin clustering enables anandamide-induced Ca2+ signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. J. Cell Sci., 121 (2008), 1704–1717. [CrossRef] [PubMed]
  49. D.J. Webb, J.T. Parsons, A.R. Horwitz. Adhesion assembly, disassembly and turnover in migrating cells - over and over and over again. Nat. Cell Biol., 4 (2002), No. 4, E97–E100. [CrossRef] [PubMed]
  50. B. Wehrle-Haller. Analysis of integrin dynamics by fluorescence recovery after photobleaching. Adhesion Protein Protocols. Springer, 2007.
  51. B. Wehrle-Haller, B.A. Imhof. Actin, microtubules and focal adhesion dynamics during cell migration. Int. J. Biochem. Cell Biol., 35 (2003), No. 1, 39–50. [CrossRef] [MathSciNet] [PubMed]
  52. E.S. Welf, B.A. Ogunnaike, U.P. Naik. Quantitative statistical description of integrin clusters in adherent cells. IET Sys. Biol., 3 (2009), No. 5, 307–316. [CrossRef]
  53. I. Wierzbicka-Patynowski, J. Schwarzbauer. The ins and outs of fibronectin matrix assembly. J. Cell Sci., 116 (2003), No. 16, 3269–3276. [CrossRef] [PubMed]
  54. P.W. Wiseman, C.M. Brown, D.J. Webb, B. Hebert, N.L. Johnson, J.A. Squier, M.H. Ellisman, A.F. Horwitz. Spatial mapping of integrin interactions and dynamics during cell migration by image correlation microscopy. J. Cell Sci., 117 (2004), No. 23, 5521–5534. [CrossRef] [PubMed]
  55. T. Yu, X. Wu, K.B. Gupta, D.F. Kucik. Affinity, lateral mobility, and clustering contribute independently to β2-integrin-mediated adhesion. Am. J. Physiol. Cell Physiol., 299 (2010), No. 2, C399–C410. [CrossRef] [PubMed]
  56. F. Zhang, J.E. Michaelson, S. Moshiach, N. Sachs, W. Zhao, Y. Sun, A. Sonnenberg, J.M. Lahti, H. Huang, X.A. Zhang. Tetraspanin CD151 maintains vascular stability by balancing the forces of cell adhesion and cytoskeletal tension. Blood, 118 (2011), No. 15, 4274–4284. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.