Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 1, 2012
Cancer modeling
Page(s) 49 - 77
Published online 25 January 2012
  1. T. Alarcon, H. Byrne, P.K. Maini. A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol., 225 (2003), No. 2, 257–74. [CrossRef] [PubMed]
  2. T. Alarcon, H. Byrne, P.K. Maini. A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J. Theor. Biol., 229 (2004), No. 3, 395–411. [CrossRef] [PubMed]
  3. A. Altinok, D. Gonze, F. Lévi, A. Goldbeter. An automaton model for the cell cycle. Interface Focus, 1 (2011), 36–47. [CrossRef] [PubMed]
  4. A.R.A. Anderson, K.A. Rejniak, P. Gerlee, V. Quaranta. Modelling of cancer growth, evolution and invasion : bridging scales and models. Math. Mod. Nat. Phenom., 2 (2007), No. 3, 1–29. [CrossRef] [EDP Sciences] [MathSciNet]
  5. B.C. Baguley, D.W. Siemann. Temporal aspects of the action of ASA404 (vadimezan ; DMXAA). Expert Opin. Investig. Drugs., 19 (2010), No. 11, 1413–25. [CrossRef] [PubMed]
  6. H.M. Byrne. Dissecting cancer through mathematics : from cell to the animal model. Nat. Rev. Cancer, 10 (2010), 221–30. [CrossRef] [PubMed]
  7. P. Carmeliet. Angiogenesis in life, disease and medicine. Nature, 438 (2005), No. 7070, 932–6. [CrossRef] [PubMed]
  8. J.J. Casciari, S.V. Sotirchos, R.M. Sutherland. Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular PH. J. Cell Physiol., 151 (1992), No. 2, 386–94. [CrossRef] [PubMed]
  9. A. d’Onofrio, A. Gandolfi. Chemotherapy of vascularised tumours : role of vessel density and the effect of vascular "pruning". J. Theor. Biol., 264 (2010), 253–65. [CrossRef] [MathSciNet] [PubMed]
  10. A. Eichholz, S. Merchant, A.M. Gaya. Anti-angiogenesis therapies : their potential in cancer management. OncoTragets and Therapy, 3 (2010), 69–82.
  11. J. Folkman. Tumor angiogenesis : therapeutic implications. N. Engl. J. Med., 285 (1971), No. 21, 1182–6. [CrossRef] [PubMed]
  12. J.P. Freyer, E. Tustanoff, A.J. Franko, R.M. Sutherland. In situ oxygen consumption rates of cells in V-79 multicellular spheroids during growth. J. Cell Physiol., 118 (1984), 53–61. [CrossRef] [PubMed]
  13. J.P. Freyer, R.M. Sutherland. Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply. Cancer Res., 46 (1986), 3504–3512. [PubMed]
  14. J.L. Gevertz. Computational modeling of tumor response to vascular-targeting therapies - part I : validation. Comput. Math. Methods Med., (2011), 830515. [CrossRef] [PubMed]
  15. J. Grote, R. Süsskind, P. Vaupel. Oxygen diffusivity in tumor tissue (DS-carcinosarcoma) under temperature conditions within the range of 20-40 degrees C. Pflugers Arch., 372 (1977), No. 1, 37–42. [CrossRef] [PubMed]
  16. C.A. Honstvet. Targeting tumour vasculature as a cancer treatment. Comp. Math. Meth. Med., 8 (2007), No. 1, 1–9. [CrossRef]
  17. T. Hoshino, C.B. Wilson, M.L. Rosenblum, M.J. Barker. Chemotherapeutic implications of growth fraction and cell cycle time in glioblastomas. Neurosurg., 43 (1975), 127–35. [CrossRef]
  18. R.K. Jain. Normalizing tumor vasculature with anti-angiogenic therapy : a new paradigm for combination therapy. Nat. Med., 7 (2001), No. 9, 987–9. [CrossRef] [PubMed]
  19. J.W. Lippert. Vascular disrupting agents. Bioorg. Med. Chem., 15 (2007), 2, 605–15. [CrossRef] [MathSciNet] [PubMed]
  20. J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini. Nonlinear modelling of cancer : bridging the gap between cells and tumours. Nonlinearity, 23 (2010), R1–R91. [CrossRef] [PubMed]
  21. P. Macklin, S.R. McDougall, A.R.A. Anderson, M.A.J. Chaplain, V. Cristini, J. Lowengrub. Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol., 58 (2009), No. 4-5, 765–98. [CrossRef] [MathSciNet] [PubMed]
  22. M. Maurin, O. Stéphan, J.C. Vial, S.R. Marder, B. van der Sanden. Deep in vivo Two-Photon Imaging of Blood Vessels with a new Dye encapsulated in Pluronic Nanomicelles. J. Biomed. Opt., 16 (2011), 036001. [CrossRef] [PubMed]
  23. S.R. McDougall, A.R.A. Anderson, M.A.J. Chaplain. Mathematical modelling of dynamic adaptative tumour-induced angiogenesis : clinical implications and therapeutic targeting strategies. J. Theor. Biol., 241 (2006), 564–89. [CrossRef] [PubMed]
  24. S.R. McDougall, M.A.J. Chaplain, A. Stéphanou, A.R.A Anderson. Modelling the impact of pericyte migration and coverage of vessels on the efficacy of vascular disrupting agents. Math. Mod. Nat. Phenom., 5 (2010), No. 1, 163–202. [CrossRef] [EDP Sciences]
  25. T. Morimura. Prolongation of G1 phase in cultured glioma cells by cis-dichlorodiammineplatinum (II) (CDDP) : Analysis using bromodeoxyuridine (BrdU)-Hoechst technique. J. Neuro-Oncol., 7 (1989), 71–79. [CrossRef]
  26. L.J. Nugent, R.K. Jain. Extravascular diffusion in normal and neoplastic tissues. Cancer Res., 44 (1984), No. 1, 238–44. [PubMed]
  27. J.M. Osborne, A. Walter, S.K. Kershaw, G.R. Mirams, A.G. Fletcher, P. Pathmanathan, D. Gavaghan, O.E. Jensen, P.K. Maini, H.M. Byrne. A hybrid approach to multi-scale modelling of cancer. Philos. Transact. A Math. Phys. Eng., 368 (2010), No. 1930, 5013–28. [CrossRef]
  28. M.R. Owen, I.J. Stamper, M. Muthana, G.W. Richardson, J. Dobson, C.E. Lewis, H.M. Byrne Mathematical modeling predicts synergistic antitumour effects of comibining a macrophage-based, hypoxia-targeted gene therapy with chemotherapy. Cancer. Res., 71 (2011), No. 8, 2826–37. [CrossRef] [PubMed]
  29. M. Pàez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Viñals, M. Inoue, G. Bergers, D. Hanahan, O. Casanovas. Antiangogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell., 15 (2009), No. 3, 220–31. [CrossRef] [PubMed]
  30. J. Panovska, H.M. Byrne, P.K. Maini. A theoretical study of the response of vascular tumours to different types of chemotherapy. Math. Comp. Mod., 47 (2008), 560–79. [CrossRef]
  31. H. Perfahl, H.M. Byrne, T. Chen, V. Estrella, T. Alarcon, A. Lapin, R.A. Gatenby, R.J. Gillies, M.C. Lloyd, P.K. Maini, M. Reuss, M.R. Owen. Multiscale modelling of vascular tumour growth in 3D : the roles of the domain size and boundary conditions. PLoS ONE, 6 (2011), No. 4, e14790. [CrossRef] [PubMed]
  32. B. Pertuiset, D. Dougherty, C. Cromeyer, T. Hoshino, M. Berger, M.L. J Rosenblum. Stem cell studies of human malignant brain tumours. Part 2 : proliferation kinetics of brain-tumour cells in vitro in early-passage cultures. Neurosurg., 63 (1985), 426–32. [CrossRef]
  33. F. Rehman, G. Rustin. ASA404 : update on drug development. Expert Opin. Investig. Drugs, 17 (2008), No. No. 10, 1547–1551. [CrossRef] [PubMed]
  34. R. Rockne, J.K. Rockhill, M. Mrugula, A.M. Spence, I. Kalet, K. Hendrickson, A. Lai, T. Cloughesy, E.C. Alvord Jr, K.R. Swanson. Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo : a mathematical modeling approach. Phys. Med. Biol., 55 (2010), 3271–85. [CrossRef] [PubMed]
  35. R.J. Shipley, S.J. Chapman. Multiscale modelling of fluid and drug transport in vascular tumours. Bull. Math. Biol., 72 (2010), No. 6, 1464–91. [CrossRef] [MathSciNet] [PubMed]
  36. D.W. Siemann, E. Mercer, S. Lepler, A.M. Rojiani. Vascular targeting agents enhance chemotherapeutic agent activities in solid tumor therapy. Int. J. Cancer, 99 (2002), 1–6. [CrossRef] [PubMed]
  37. D.W. Siemann, M.R. Horsman. Enhancement of radiation therapy by vascular targeting agents. Curr. Opin. Investig. Drugs, 3 (2002), 1660–5. [PubMed]
  38. D.W. Siemann, M.R. Horsman. Vascular targeted therapies in oncology. Cell Tissue Res. 335 (2009), No. 1, 241–248. [CrossRef] [PubMed]
  39. G.S. Stamatakos, V.P. Antipas, N.K. Uzunoglu, R.G. Dale. A four-dimensional computer simulation model of the in vivo response to radiotherapy of glioblastoma multiforme : studies on the effect of clonogenic cell density. The British Journal of Radiology, 79 (2006), 389–400. [CrossRef] [PubMed]
  40. A. Stéphanou, S.R. McDougall, A.R.A Anderson, M.A.J. Chaplain. Mathematical modelling of flow in 2d and 3d vascular networks : applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comp. Mod., 41 (2005), No. 10, 1137–56. [CrossRef]
  41. A. Stéphanou, S.R. McDougall, A.R.A Anderson, M.A.J. Chaplain. Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Math. Comp. Mod., 44 (2006), No. 1-2, 96–123. [CrossRef]
  42. E.A. Swabb, J. Wei, P.M. Gullino. Diffusion and convection in normal and neoplastic tissues. Cancer Res., 34 (1974), No. 10, 2814–22. [PubMed]
  43. K.R. Swanson, E.C. Alvord, J.D. Murray. Quantifying efficacy of chemotherapy of brain tumours with homogeneous and heterogeneous drug delivery. Acta. Biotheor., 50 (2002), No. 4, 223–37. [CrossRef] [PubMed]
  44. G. Tanaka, Y. Hirata, S.L. Goldenberg, N. Bruchovsky, K. Aihara. Mathematical modelling of prostate cancer growth and its application to hormone therapy. Phil. Trans. R. Soc. A, 368 (2010), 5029–44. [CrossRef]
  45. G.M. Tozer, C. Kanthou, B.C. Baguley. Disrupting tumour blood vessels. Nat. rev. Cancer, 5 (2005), No. 6, 423–35. [CrossRef] [PubMed]
  46. P. Tracqui. Biophysical models of tumour growth. Rep. Prog. Phys., 72 (2009), No. 5, 056701. [CrossRef]
  47. J.T. Tyson, B. Novak. Temporal organization of the cell cycle. Curr. Biol., 18 (2008), No. 17, R759–R768. [CrossRef] [PubMed]
  48. B. Wang, J.M. Rosano, R. Cheheltani, M.P. Achary, M.F. Kiani. Towards a targeted multi-drug delivery approach to improve therapeutic efficacy in breast cancer. Expert Opin. Drug Deliv., 7 (2010), No. 10, 1159–73. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.