Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 7, Number 1, 2012
Cancer modeling
|
|
---|---|---|
Page(s) | 49 - 77 | |
DOI | https://doi.org/10.1051/mmnp/20127104 | |
Published online | 25 January 2012 |
- T. Alarcon, H. Byrne, P.K. Maini. A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol., 225 (2003), No. 2, 257–74. [CrossRef] [PubMed] [Google Scholar]
- T. Alarcon, H. Byrne, P.K. Maini. A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J. Theor. Biol., 229 (2004), No. 3, 395–411. [Google Scholar]
- A. Altinok, D. Gonze, F. Lévi, A. Goldbeter. An automaton model for the cell cycle. Interface Focus, 1 (2011), 36–47. [Google Scholar]
- A.R.A. Anderson, K.A. Rejniak, P. Gerlee, V. Quaranta. Modelling of cancer growth, evolution and invasion : bridging scales and models. Math. Mod. Nat. Phenom., 2 (2007), No. 3, 1–29. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- B.C. Baguley, D.W. Siemann. Temporal aspects of the action of ASA404 (vadimezan ; DMXAA). Expert Opin. Investig. Drugs., 19 (2010), No. 11, 1413–25. [CrossRef] [PubMed] [Google Scholar]
- H.M. Byrne. Dissecting cancer through mathematics : from cell to the animal model. Nat. Rev. Cancer, 10 (2010), 221–30. [CrossRef] [PubMed] [Google Scholar]
- P. Carmeliet. Angiogenesis in life, disease and medicine. Nature, 438 (2005), No. 7070, 932–6. [CrossRef] [PubMed] [Google Scholar]
- J.J. Casciari, S.V. Sotirchos, R.M. Sutherland. Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular PH. J. Cell Physiol., 151 (1992), No. 2, 386–94. [Google Scholar]
- A. d’Onofrio, A. Gandolfi. Chemotherapy of vascularised tumours : role of vessel density and the effect of vascular "pruning". J. Theor. Biol., 264 (2010), 253–65. [Google Scholar]
- A. Eichholz, S. Merchant, A.M. Gaya. Anti-angiogenesis therapies : their potential in cancer management. OncoTragets and Therapy, 3 (2010), 69–82. [Google Scholar]
- J. Folkman. Tumor angiogenesis : therapeutic implications. N. Engl. J. Med., 285 (1971), No. 21, 1182–6. [Google Scholar]
- J.P. Freyer, E. Tustanoff, A.J. Franko, R.M. Sutherland. In situ oxygen consumption rates of cells in V-79 multicellular spheroids during growth. J. Cell Physiol., 118 (1984), 53–61. [CrossRef] [PubMed] [Google Scholar]
- J.P. Freyer, R.M. Sutherland. Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply. Cancer Res., 46 (1986), 3504–3512. [PubMed] [Google Scholar]
- J.L. Gevertz. Computational modeling of tumor response to vascular-targeting therapies - part I : validation. Comput. Math. Methods Med., (2011), 830515. [CrossRef] [PubMed] [Google Scholar]
- J. Grote, R. Süsskind, P. Vaupel. Oxygen diffusivity in tumor tissue (DS-carcinosarcoma) under temperature conditions within the range of 20-40 degrees C. Pflugers Arch., 372 (1977), No. 1, 37–42. [CrossRef] [PubMed] [Google Scholar]
- C.A. Honstvet. Targeting tumour vasculature as a cancer treatment. Comp. Math. Meth. Med., 8 (2007), No. 1, 1–9. [CrossRef] [Google Scholar]
- T. Hoshino, C.B. Wilson, M.L. Rosenblum, M.J. Barker. Chemotherapeutic implications of growth fraction and cell cycle time in glioblastomas. Neurosurg., 43 (1975), 127–35. [CrossRef] [Google Scholar]
- R.K. Jain. Normalizing tumor vasculature with anti-angiogenic therapy : a new paradigm for combination therapy. Nat. Med., 7 (2001), No. 9, 987–9. [Google Scholar]
- J.W. Lippert. Vascular disrupting agents. Bioorg. Med. Chem., 15 (2007), 2, 605–15. [Google Scholar]
- J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini. Nonlinear modelling of cancer : bridging the gap between cells and tumours. Nonlinearity, 23 (2010), R1–R91. [CrossRef] [PubMed] [Google Scholar]
- P. Macklin, S.R. McDougall, A.R.A. Anderson, M.A.J. Chaplain, V. Cristini, J. Lowengrub. Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol., 58 (2009), No. 4-5, 765–98. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- M. Maurin, O. Stéphan, J.C. Vial, S.R. Marder, B. van der Sanden. Deep in vivo Two-Photon Imaging of Blood Vessels with a new Dye encapsulated in Pluronic Nanomicelles. J. Biomed. Opt., 16 (2011), 036001. [CrossRef] [PubMed] [Google Scholar]
- S.R. McDougall, A.R.A. Anderson, M.A.J. Chaplain. Mathematical modelling of dynamic adaptative tumour-induced angiogenesis : clinical implications and therapeutic targeting strategies. J. Theor. Biol., 241 (2006), 564–89. [CrossRef] [PubMed] [Google Scholar]
- S.R. McDougall, M.A.J. Chaplain, A. Stéphanou, A.R.A Anderson. Modelling the impact of pericyte migration and coverage of vessels on the efficacy of vascular disrupting agents. Math. Mod. Nat. Phenom., 5 (2010), No. 1, 163–202. [CrossRef] [EDP Sciences] [Google Scholar]
- T. Morimura. Prolongation of G1 phase in cultured glioma cells by cis-dichlorodiammineplatinum (II) (CDDP) : Analysis using bromodeoxyuridine (BrdU)-Hoechst technique. J. Neuro-Oncol., 7 (1989), 71–79. [CrossRef] [Google Scholar]
- L.J. Nugent, R.K. Jain. Extravascular diffusion in normal and neoplastic tissues. Cancer Res., 44 (1984), No. 1, 238–44. [PubMed] [Google Scholar]
- J.M. Osborne, A. Walter, S.K. Kershaw, G.R. Mirams, A.G. Fletcher, P. Pathmanathan, D. Gavaghan, O.E. Jensen, P.K. Maini, H.M. Byrne. A hybrid approach to multi-scale modelling of cancer. Philos. Transact. A Math. Phys. Eng., 368 (2010), No. 1930, 5013–28. [Google Scholar]
- M.R. Owen, I.J. Stamper, M. Muthana, G.W. Richardson, J. Dobson, C.E. Lewis, H.M. Byrne Mathematical modeling predicts synergistic antitumour effects of comibining a macrophage-based, hypoxia-targeted gene therapy with chemotherapy. Cancer. Res., 71 (2011), No. 8, 2826–37. [CrossRef] [PubMed] [Google Scholar]
- M. Pàez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Viñals, M. Inoue, G. Bergers, D. Hanahan, O. Casanovas. Antiangogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell., 15 (2009), No. 3, 220–31. [Google Scholar]
- J. Panovska, H.M. Byrne, P.K. Maini. A theoretical study of the response of vascular tumours to different types of chemotherapy. Math. Comp. Mod., 47 (2008), 560–79. [CrossRef] [Google Scholar]
- H. Perfahl, H.M. Byrne, T. Chen, V. Estrella, T. Alarcon, A. Lapin, R.A. Gatenby, R.J. Gillies, M.C. Lloyd, P.K. Maini, M. Reuss, M.R. Owen. Multiscale modelling of vascular tumour growth in 3D : the roles of the domain size and boundary conditions. PLoS ONE, 6 (2011), No. 4, e14790. [CrossRef] [PubMed] [Google Scholar]
- B. Pertuiset, D. Dougherty, C. Cromeyer, T. Hoshino, M. Berger, M.L. J Rosenblum. Stem cell studies of human malignant brain tumours. Part 2 : proliferation kinetics of brain-tumour cells in vitro in early-passage cultures. Neurosurg., 63 (1985), 426–32. [CrossRef] [Google Scholar]
- F. Rehman, G. Rustin. ASA404 : update on drug development. Expert Opin. Investig. Drugs, 17 (2008), No. No. 10, 1547–1551. [CrossRef] [PubMed] [Google Scholar]
- R. Rockne, J.K. Rockhill, M. Mrugula, A.M. Spence, I. Kalet, K. Hendrickson, A. Lai, T. Cloughesy, E.C. Alvord Jr, K.R. Swanson. Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo : a mathematical modeling approach. Phys. Med. Biol., 55 (2010), 3271–85. [CrossRef] [PubMed] [Google Scholar]
- R.J. Shipley, S.J. Chapman. Multiscale modelling of fluid and drug transport in vascular tumours. Bull. Math. Biol., 72 (2010), No. 6, 1464–91. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- D.W. Siemann, E. Mercer, S. Lepler, A.M. Rojiani. Vascular targeting agents enhance chemotherapeutic agent activities in solid tumor therapy. Int. J. Cancer, 99 (2002), 1–6. [CrossRef] [PubMed] [Google Scholar]
- D.W. Siemann, M.R. Horsman. Enhancement of radiation therapy by vascular targeting agents. Curr. Opin. Investig. Drugs, 3 (2002), 1660–5. [PubMed] [Google Scholar]
- D.W. Siemann, M.R. Horsman. Vascular targeted therapies in oncology. Cell Tissue Res. 335 (2009), No. 1, 241–248. [CrossRef] [PubMed] [Google Scholar]
- G.S. Stamatakos, V.P. Antipas, N.K. Uzunoglu, R.G. Dale. A four-dimensional computer simulation model of the in vivo response to radiotherapy of glioblastoma multiforme : studies on the effect of clonogenic cell density. The British Journal of Radiology, 79 (2006), 389–400. [CrossRef] [PubMed] [Google Scholar]
- A. Stéphanou, S.R. McDougall, A.R.A Anderson, M.A.J. Chaplain. Mathematical modelling of flow in 2d and 3d vascular networks : applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comp. Mod., 41 (2005), No. 10, 1137–56. [CrossRef] [Google Scholar]
- A. Stéphanou, S.R. McDougall, A.R.A Anderson, M.A.J. Chaplain. Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Math. Comp. Mod., 44 (2006), No. 1-2, 96–123. [Google Scholar]
- E.A. Swabb, J. Wei, P.M. Gullino. Diffusion and convection in normal and neoplastic tissues. Cancer Res., 34 (1974), No. 10, 2814–22. [PubMed] [Google Scholar]
- K.R. Swanson, E.C. Alvord, J.D. Murray. Quantifying efficacy of chemotherapy of brain tumours with homogeneous and heterogeneous drug delivery. Acta. Biotheor., 50 (2002), No. 4, 223–37. [CrossRef] [PubMed] [Google Scholar]
- G. Tanaka, Y. Hirata, S.L. Goldenberg, N. Bruchovsky, K. Aihara. Mathematical modelling of prostate cancer growth and its application to hormone therapy. Phil. Trans. R. Soc. A, 368 (2010), 5029–44. [CrossRef] [Google Scholar]
- G.M. Tozer, C. Kanthou, B.C. Baguley. Disrupting tumour blood vessels. Nat. rev. Cancer, 5 (2005), No. 6, 423–35. [CrossRef] [PubMed] [Google Scholar]
- P. Tracqui. Biophysical models of tumour growth. Rep. Prog. Phys., 72 (2009), No. 5, 056701. [CrossRef] [Google Scholar]
- J.T. Tyson, B. Novak. Temporal organization of the cell cycle. Curr. Biol., 18 (2008), No. 17, R759–R768. [CrossRef] [PubMed] [Google Scholar]
- B. Wang, J.M. Rosano, R. Cheheltani, M.P. Achary, M.F. Kiani. Towards a targeted multi-drug delivery approach to improve therapeutic efficacy in breast cancer. Expert Opin. Drug Deliv., 7 (2010), No. 10, 1159–73. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.