Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 1, 2012
Cancer modeling
Page(s) 78 - 104
DOI https://doi.org/10.1051/mmnp/20127105
Published online 25 January 2012
  1. M. Abercrombie. The crawling movement of cells. Proc. R. Soc. London B., 207 (1980), 129–147. [CrossRef] [Google Scholar]
  2. T. Alarcon, H. Byrne, P. Maini. A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol., 225 (2003), 257–274. [CrossRef] [PubMed] [Google Scholar]
  3. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology of the Cell, 4th ed. Garland Science, New York, 2002. [Google Scholar]
  4. A. Anderson, A. Weaver, P. Commmings, V. Quaranta. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell, 127 (2006), 905–915. [CrossRef] [PubMed] [Google Scholar]
  5. A. Anderson. A hybrid mathematical model of solid tumour invasion : the importance of cell adhesion. Math. Med. Biol., 22 (2005), 163–186. [CrossRef] [PubMed] [Google Scholar]
  6. R. Araujo, D. McElwain. A history of the study of solid tumour growth : the contribution of mathematical modelling. Bull. Math. Biol., 66 (2004), 1039–1091. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. A. Balter, R. M. H. Merks, N. J. Poplawski, M. Swat, J. A. Glazier. The Glazier-Graner-Hogeweg model : extensions, future directions, and opportunities for further study. In A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak editors, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions, Birkaüser, 151–167, 2007. [Google Scholar]
  8. N. Bellomo, N. K. Li, P. K. Maini. On the foundations of cancer modelling : selected topics, speculations, and perspectives. Math. Models Methods Appl. Sci., 18 (2008), 593–646. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. J. M. Bock, L. L. Sinclair, N. S. Bedford, R. E. Jackson, J. H. Lee, D. K. Trask. Modulation of cellular invasion by VEGF-C expression in squamous cell carcinoma of the head and neck. Arch. Otolaryngol. Head. Neck. Surg., 134 (2008), No. 4, 355–362. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. J. M. Brown. Tumor microenvironment and the response to anticancer therapy. Cancer Biol. Ther., 1 (2002), 453–458. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  11. A. Bru, S. Albertos, J. L. Subiza, J. L. García-Asenjo, I. Bru. The universal dynamics of tumor growth. Bioph. J., 85 (2003), No. 5, 2948–2961. [CrossRef] [PubMed] [Google Scholar]
  12. Cancer modeling and simulation, L. Preziosi editor, Mathematical Biology and Medicine Sciences, Chapman and Hall/CRC, 2003. [Google Scholar]
  13. H. Byrne, T. Alarcon, M. Owen, S. Webb, P. Maini. Modeling aspects of cancer dynamics : a review. Philos. Trans. R. Soc. A., 364 (2006), 1563–1578. [CrossRef] [Google Scholar]
  14. M. A. J. Chaplain, A. R. A. Anderson. Mathematical modelling of tissue invasion. In L. Preziosi editor, Cancer Modelling and Simulation, Chapman Hall/CRC, 269–297, 2003. [Google Scholar]
  15. V. Cristini, H. Frieboes, R. Gatenby, S. Caserta, M. Ferrari, J. Sinek. Morphologic instability and cancer invasion. Clin. Cancer Res., 11 (2005), 6772–6779. [CrossRef] [PubMed] [Google Scholar]
  16. V. Cristini, J. Lowengrub, Q. Nie. Nonlinear simulation of tumor growth. J. Math. Biol., 46 (2003), 191–224. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. S. S. Cross. Fractals in pathology. J. Pathol., 182 (1997), 1–8. [PubMed] [Google Scholar]
  18. A. De Luca, N. Arena, L. M. Sena, E. Medico. Met overexpression confers HGF-dependent invasive phenotype to human thyroid carcinoma cells in vitro. J. Cell Physiol., 180 (1999), 365 –371. [CrossRef] [PubMed] [Google Scholar]
  19. M. F. Di Renzo, M. Oliviero, R. P. Narsimhan, S. Bretti, S. Giordano, E. Medico, P. Gaglia, P. Zara, P. M. Comoglio. Expression of the Met/HGF receptor in normal and neoplastic human tissues. Oncogene, 6 (1991), 1997–2003. [PubMed] [Google Scholar]
  20. A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, D. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J., 86 (2004), 617–628. [CrossRef] [PubMed] [Google Scholar]
  21. R. Gatenby, K. Smallbone, P. Maini, F. Rose, J. Averill, R. Nagle, L. Worrall, R. Gillies. Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br. J. Cancer, 97 (2007), 646–653. [CrossRef] [PubMed] [Google Scholar]
  22. C. Gaudet, W. Marganski, S. Kim, C. T. Brown, V. Gunderia, M. Dembo, J. Wong. Influence of type I collagen surface density on fibroblast spreading, motility, and contractility. Biophys. J., 85 (2003), 3329–3335. [CrossRef] [PubMed] [Google Scholar]
  23. P. Gerlee, A. Anderson. An evolutionary hybrid cellular automaton model of solid tumor growth. J. Theor. Biol., 246 (2007), 583–603. [CrossRef] [PubMed] [Google Scholar]
  24. P. Gerlee, A. Anderson. Stability analysis of a hybrid cellular automaton model of cell colony growth. Phys. Rev. E, 75 (2007), 051911. [CrossRef] [Google Scholar]
  25. C. Giverso, M. Scianna, L. Preziosi, N. Lo Buono, A. Funaro. Individual cell-based model for in-vitro mesothelial invasion of ovarian cancer. Math. Model. Nat. Phenom., 5 (2010), No. 1, 203–223. [CrossRef] [EDP Sciences] [Google Scholar]
  26. J. A. Glazier, A. Balter, N. J. Poplawski. Magnetization to morphogenesis : A brief history of the Glazier-Graner-Hogeweg model. In A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak editors, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions, Birkaüser, 79–106, 2007. [Google Scholar]
  27. J. A. Glazier, F. Graner. Simulation of the differential adhesion driven rearrangement of biological cells. Physical. Rev. E, 47 (1993), 2128–2154. [CrossRef] [PubMed] [Google Scholar]
  28. F. Graner, J. A. Glazier. Simulation of biological cell sorting using a two dimensional extended Potts model. Phys. Rev. Lett., 69 (1992), 2013–2017. [CrossRef] [PubMed] [Google Scholar]
  29. H. Hatzikirou, A. Deutsch, C. Schaller, M. Simon, K. Swanson. Mathematical modeling of glioblastoma tumour development : a review. Math. Models Methods Appl. Sci., 15 (2005), 1779–1794. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  30. B. Hegedus, F. Marga, K. Jakab, K. L. Sharpe-Timms, G. Forgacs. The interplay of cell-cell and cell-matrix interactions in the invasive properties of brain tumors. Biophys. J., 91 (2006), 2708–2716. [CrossRef] [PubMed] [Google Scholar]
  31. C. Hogea, B. Murray, J. Sethian. Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method. J. Math. Biol., 53 (2006), 86–134. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  32. S. Huang, D. E. Ingber. The structural and mechanical complexity of cell-growth control. Nat. Cell Biol., 1 (1999), 131–138. [CrossRef] [Google Scholar]
  33. E. Ising. Beitrag zur theorie des ferromagnetismus. Z. Physik., 31 (1925), 253. [CrossRef] [Google Scholar]
  34. Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell, J. Freyer. A multiscale model for avascular tumor growth. Biophys. J., 89 (2005), 3884–3894. [CrossRef] [PubMed] [Google Scholar]
  35. H. A. Kenny, S. Kaur, L. M. Coussens, E. Lengyel. The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J. Clin. Invest., 118 (2008), 1367–1379. [CrossRef] [PubMed] [Google Scholar]
  36. G. Landini, Y. Hirayama, T. J. Li, M. Kitano. Increased fractal complexity of the epithelialŰ connective tissue interface in the tongue of 4NQ0-treated rats. Pathol. Res. Pract., 196 (2000), 251–258. [CrossRef] [PubMed] [Google Scholar]
  37. X. Li, V. Cristini, Q. Nie, J. Lowengrub. Nonlinear three-dimensional simulation of solid tumor growth. Discrete Dyn. Continuous Dyn. Syst. B, 7 (2007), 581–604. [CrossRef] [Google Scholar]
  38. J. Lowengrub, V. Cristini, H. B. Frieboes, X. Li, P. Macklin, S.Sanga, S. M. Wise, X. Zheng. Nonlinear modeling and simulation of tumor growth, In N. Bellomo, M. Chaplain and E. DeAngelis Modeling and Simulation in Science, Birkaüser, in press, 2011. [Google Scholar]
  39. J. Lowengrub, V. Cristini. Multiscale modeling of cancer : an integrated experimental and mathematical modeling approach. Cambridge University Press, 2010. [Google Scholar]
  40. J. Lowengrub, H. B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S. M. Wise, V. Cristini. Nonlinear modeling of cancer : bridging the gap between cells and tumors. Nonlinearity, 23 (2010), 1, R1–R91. [CrossRef] [PubMed] [Google Scholar]
  41. P. Macklin, J. Lowengrub. An improved geometry-aware curvature discretization for level set methods : application to tumor growth. J. Comput. Phys., 215 (2006), 392–401. [CrossRef] [Google Scholar]
  42. P. Macklin, J. Lowengrub. Nonlinear simulation of the effect of microenvironment on tumor growth. J. Theor. Biol., 245 (2007), No. 4, 677–704. [CrossRef] [PubMed] [Google Scholar]
  43. A. F. M. Marée, V. A. Grieneisen, P. Hogeweg, P. The Cellular Potts Model and biophysical properties of cells, tissues and morphogenesis. In A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak editors, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions, Birkaüser, 107–136, 2007. [Google Scholar]
  44. R. M. H. Merks, P. Koolwijk. Modeling morphogenesis in silico and in vitro : towards quantitative, predictive, cell-based modeling. Math. Model. Nat. Phenom., 4 (2009), No. 4, 149–171. [CrossRef] [EDP Sciences] [Google Scholar]
  45. N. Metropolis, A. E. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller. Equation of state calculations by fast computing machines. J. Chem. Phys., 21 (1953), 1087–1092. [NASA ADS] [CrossRef] [Google Scholar]
  46. E. Montero, C. Abreu, P. Tonino. Relationship between VEGF and p53 expression and tumor cell proliferation in human gastrointestinal carcinomas. Journal of Cancer Research and Clinical Oncology, 134 (2007), No. 2, 193–201. [CrossRef] [PubMed] [Google Scholar]
  47. W. Mueller-Klieser. Tumor biology and experimental therapeutics. Crit. Rev. Oncol. Hematol., 36 (2002), 123–139. [CrossRef] [Google Scholar]
  48. G. Murphy, J. Gavrilovic. Proteolysis and cell migration : creating a path ? Curr. Opin. Cell Biol., 11 (1999), 614–621. [CrossRef] [PubMed] [Google Scholar]
  49. H. Osada, T. Takahashi. Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer. Oncogene, 21 (2002), 7421–7434. [CrossRef] [PubMed] [Google Scholar]
  50. N. B. Ouchi, J. A. Glazier, J. P. Rieu, A. Upadhyaya, J. Sawada. Improving the realism of the cellular Potts model in simulations of biological cells. Physica A, 329 (2003), 451–458. [CrossRef] [Google Scholar]
  51. R. B. Potts. Some generalized order-disorder transformations. Proc. Camb. Phil. Soc., 48 (1952), 106–109. [CrossRef] [MathSciNet] [Google Scholar]
  52. L. Preziosi, A. Tosin. Multiphase modeling of tumor growth and extracellular matrix interaction : mathematical tools and applications, J. Math. Biol., 58 (2007), No. 4-5, 625–656. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  53. L. Preziosi, A. Tosin. Multiphase and multiscale trends in cancer modelling. Math. Model. Nat. Phenom., 4 (2009), No. 3, 1–11. [CrossRef] [EDP Sciences] [Google Scholar]
  54. V. Quaranta, A. Weaver, P. Cummings, A. Anderson. Mathematical modeling of cancer : The future of prognosis and treatment. Clin. Chim. Acta, 357 (2005), 173–179. [CrossRef] [PubMed] [Google Scholar]
  55. I. Ramis-Conde, D. Drasdo, A. R. A. Anderson, M. A. J. Chaplain. Modeling the influence of E-cadherin-beta-catenin pathway in cancer cell invasion : a multiscale approach. Biophys. J., 95 (2008), 155–165. [CrossRef] [PubMed] [Google Scholar]
  56. K. A. Rejniak, R. H. Dillon. A single cell-based model of the ductal tumor microarchitecture. Comp. Math. Meth. Med., 8 (2007), No. 1, 51–69. [CrossRef] [Google Scholar]
  57. B. Ribba, O. Sautb, T. Colinb, D. Breschc, E. Grenierd, J. P. Boissel. A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. J. Theor. Biol., 243 (2006), 532–541. [CrossRef] [PubMed] [Google Scholar]
  58. C. G. Rolli, T. Seufferlein, R. Kemkemer, J. P. Spatz. Impact of Tumor Cell Cytoskeleton Organization on Invasiveness and Migration : A Microchannel-Based Approach. PLoS ONE, 5 (2010), e8726. doi :10.1371/journal.pone.0008726. [CrossRef] [PubMed] [Google Scholar]
  59. S. Sanga, J. Sinek, H. Frieboes, M. Ferrari, J. Fruehauf, V. Cristini. Mathematical modeling of cancer progression and response to chemotherapy. Expert. Rev. Anticancer Ther., 6 (2006), 1361–1376. [CrossRef] [PubMed] [Google Scholar]
  60. N. J. Savill, P. Hogeweg. Modelling morphogenesis : from single cells to crawling slugs. J. Theor. Biol., 184 (1997), 118–124. [CrossRef] [Google Scholar]
  61. M. Scianna. A multiscale hybrid model for pro-angiogenic calcium signals in a vascular endothelial cell. Bull. Math. Biol., doi : 10.1007/s11538-011-9695-8 (2011), in press. [Google Scholar]
  62. M. Scianna, L. Preziosi. Multiscale Developments of the Cellular Potts Model. (2010). In revision. [Google Scholar]
  63. J. A. Smith, L. Martin. Do cells cycle ? Proc. Natl. Acad. Sci. U.S.A., 70 (1973), 1263–1267. [CrossRef] [PubMed] [Google Scholar]
  64. J. Smolle. Fractal tumor stromal border in a nonequilibrium growth model. Anal. Quant. Cytol. Histol., 20 (1998), 7–13. [PubMed] [Google Scholar]
  65. I. A. Steele, R. J. Edmondson, H. Y. Leung, B. R. Davies. Ligands to FGF receptor 2-IIIb induce proliferation, motility, protection from cell death and cytoskeletal rearrangements in epithelial ovarian cancer cell lines. Growth Factors, 24 (2006), No. 1, 45–53. [CrossRef] [PubMed] [Google Scholar]
  66. M. S. Steinberg. Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science, 141 (1963), 401–408. [CrossRef] [PubMed] [Google Scholar]
  67. M. S. Steinberg. Does differential adhesion govern self-assembly processes in histogenesis ? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J. Exp. Zool., 173 (1970), No. 4, 395–433. [CrossRef] [PubMed] [Google Scholar]
  68. W. G. Stetler-Stevenson, S. Aznavoorian, L. A. Liotta. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Ann. Rev. Cell Biol., 9 (1993), 541–573. [CrossRef] [Google Scholar]
  69. J. L. Su, P. C. Yang, J. Y. Shih, C. Y. Yang, L. H. Wei, M. L. Kuo, et al.. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell, 9 (2006), 209–223. [CrossRef] [PubMed] [Google Scholar]
  70. P. Tracqui. Biophysical models of tumour growth. Rep. Prog. Phys., 72 (2009), 5, 056701. [CrossRef] [Google Scholar]
  71. S. Turner, J. A. Sherratt. Intercellular adhesion and cancer invasion : A discrete simulation using the extended Potts model. J. Theor. Biol., 216 (2002), 85–100. [CrossRef] [PubMed] [Google Scholar]
  72. P. Vaupel, M. Hockel. Blood supply, oxygenation status and metabolic micromilieu of breast cancers : characterization and therapeutic relevance (Review). Int. J. Oncol., 17 (2000), 869–879. [PubMed] [Google Scholar]
  73. Y. W. Zhang, G. F. Vande Woude. HGF/SF-Met signaling in the control of branching morphogenesis and invasion. J. Cell Biochem., 88 (2003), 408–417. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.