Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 1, 2012
Cancer modeling
Page(s) 306 - 336
Published online 25 January 2012
  1. N. André, A. Rome, C. Coze, L. Padovani, E. Pasquier, L. Camoin, and J.-C. Gentet. Metronomic etoposide/cyclophosphamide/celecoxib regimen to children and adolescents with refractory cancer : a preliminary monocentric study. Clin. Therapeutics, 30 (2008), No. 7, 1336–1340. [CrossRef] [Google Scholar]
  2. D. Barbolosi, A. Benabdallah, F. Hubert, and F. Verga. Mathematical and numerical analysis for a model of growing metastatic tumors. Math. Biosci., 218 (2009), No. 1, 1–14. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. D. Barbolosi, G. Freyer, J. Ciccolini, and A. Iliadis. Optimisation de la posologie et des modalités d’administration des agents cytotoxiques à l’aide d’un modèle mathématique. Bulletin du Cancer, 90 (2003), No. 2, 167–175. [PubMed] [Google Scholar]
  4. D. Barbolosi and A. Iliadis. Optimizing drug regimens in cancer chemotherapy : a simulation study using a pk–pd model. Comput. Biol. Med., 31 (2001), 157–172. [CrossRef] [PubMed] [Google Scholar]
  5. D. Barbolosi, F. Verga, A. Benabdallah, F. Hubert, C. Mercier, J. Ciccolini, and C. Faivre. Modélisation du rique d’évolution métastatique chez les patients supposés avoir une maladie localisée. Oncologie, 13 (2011), No. 8, 528–533. [CrossRef] [Google Scholar]
  6. S. Baruchel, M. Diezi, D. Hargrave, D. Stempak, J. Gammon, A. Moghrabi, MJ. Coppes, C.V. Fernandez, and E. Bouffet. Safety and pharmacokinetics of temozolomide using a dose-escalation, metronomic schedule in recurrent paediatric brain tumours. Eur. J. Cancer, 42 (2006), 2335–2342. [CrossRef] [PubMed] [Google Scholar]
  7. S. Benzekry. Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis. J. Evol. Equ., 11 (2011), No. 1, 187. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Benzekry. Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers. M2AN, 46 (2012), No. 2, 207–237. [CrossRef] [EDP Sciences] [Google Scholar]
  9. S. Benzekry. Passing to the limit 2D-1D in a model for metastatic growth. To appear in J. Biol. Dyn., (2011), [Google Scholar]
  10. S. Benzekry and A. Benabdallah. An optimal control problem for anti-cancer therapies in a model for metastatic evolution. In preparation (2011), [Google Scholar]
  11. S. Benzekry, G. Chapuisat, J. Ciccolini, A. Erlinger, and Hubert F., A new mathematical model for optimizing the combination between anti-angiogenic and cytotoxic drugs in oncology. In preparation (2011), [Google Scholar]
  12. T. Browder, C. E. Butterfield, B. M. Kraling, B. Shi, B. Marshall, M. S. O’Reilly, and J. Folkman. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res., 60 (2000), 1878–1886. [PubMed] [Google Scholar]
  13. R. Bruno, N. Vivier, J. C. Vergniol, S. L. De Phillips, G. Montay, and L. B. Sheiner. A population pharmacokinetic model for docetaxel (Taxotere) : model building and validation. J. Pharmacokinet Biopharm., 24 (1996), 153–172. [CrossRef] [PubMed] [Google Scholar]
  14. M. Casanova, A. Ferrari, G. Bisogno, J. H. Merks, G. L. De Salvo, C. Meazza, K. Tettoni, M. Provenzi, I. Mazzarino, and M. Carli. Vinorelbine and low-dose cyclophosphamide in the treatment of pediatric sarcomas : pilot study for the upcoming European Rhabdomyosarcoma Protocol. Cancer, 101 (2004), 1664–1671. [CrossRef] [PubMed] [Google Scholar]
  15. M. Chefrour, J. L. Fischel, P. Formento, S. Giacometti, R. M. Ferri-Dessens, H. Marouani, M. Francoual, N. Renee, C. Mercier, G. Milano, and J. Ciccolini. Erlotinib in combination with capecitabine (5’dFUR) in resistant pancreatic cancer cell lines. J. Chemother., 22 (2010), 129–133. [PubMed] [Google Scholar]
  16. L. M. Choi, B. Rood, N. Kamani, D. La Fond, R. J. Packer, M. R. Santi, and T. J. Macdonald. Feasibility of metronomic maintenance chemotherapy following high-dose chemotherapy for malignant central nervous system tumors. Pediatr. Blood Cancer, 50 (2008), 970–975. [Google Scholar]
  17. E. Comen, L. Norton, and J. Massague. Clinical implications of cancer self-seeding. Nat. Rev. Clin. Oncol., 8 (2011), 369–377. [PubMed] [Google Scholar]
  18. A. Devys, T. Goudon, and P. Laffitte. A model describing the growth and the size distribution of multiple metastatic tumors. Discret. and contin. dyn. syst. series B, 12 (2009), No. 4. [Google Scholar]
  19. A. d’Onofrio, A. Gandolfi, and A. Rocca. The dynamics of tumour-vasculature interaction suggests low-dose, time-dense anti-angiogenic schedulings. Cell Prolif., 42 (2009), 317–329. [CrossRef] [PubMed] [Google Scholar]
  20. J. M.L. Ebos, C. R. Lee, W. Crus-Munoz, G. A. Bjarnason, and J. G. Christensen. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell, 15 (2009), 232–239. [CrossRef] [PubMed] [Google Scholar]
  21. J. Folkman. Antiangiogenesis : new concept for therapy of solid tumors, Ann. Surg., 175 (1972), 409–416. [CrossRef] [PubMed] [Google Scholar]
  22. A. Fontana, A. Falcone, L. Derosa, T. Di Desidero, R. Danesi, and G. Bocci. Metronomic chemotherapy for metastatic prostate cancer : a ’young’ concept for old patients ?. Drugs Aging, 27 (2010), 689–696. [Google Scholar]
  23. A. B. Francesconi, S. Dupre, M. Matos, D. Martin, B. G. Hughes, D. K. Wyld, and J. D. Lickliter. Carboplatin and etoposide combined with bevacizumab for the treatment of recurrent glioblastoma multiforme. J. Clin. Neurosci., 17 (2010), 970–974. [CrossRef] [PubMed] [Google Scholar]
  24. G. Gasparini, R. Longo, M. Fanelli, and B. A. Teicher. Combination of antiangiogenic therapy with other anticancer therapies : Results, challenges, and open questions. Journal of Clinical Oncology, 23 (2005), No. 6 1295–1311. [CrossRef] [Google Scholar]
  25. P. Hahnfeldt, J. Folkman, and L. Hlatky. Minimizing long-term tumor burden : the logic for metronomic chemotherapeutic dosing and its antiangiogenic basis. J. Theor. Biol., 220 (2003), 545–554. [Google Scholar]
  26. P. Hahnfeldt, D. Panigraphy, J. Folkman, and L. Hlatky. Tumor development under angiogenic signaling : a dynamical theory of tumor growth, treatment, response and postvascular dormancy. Cancer Research, 59 (1999), 4770–4775. [Google Scholar]
  27. A. Iliadis and D. Barbolosi. Optimizing drug regimens in cancer chemotherapy by an efficacy-toxicity mathematical model. Comput. Biomed. Res., 33 (2000), 211–226. [Google Scholar]
  28. K. Iwata, K. Kawasaki, and Shigesada N. A dynamical model for the growth and size distribution of multiple metastatic tumors. J. Theor. Biol., 203 (2000), 177–186. [Google Scholar]
  29. R. K. Jain. Normalizing tumor vasculature with anti-angiogenic therapy : A new paradigm for combination therapy. Nature Medicine, 7 (2001), 987–989. [Google Scholar]
  30. K. Jordan, H. H. Wolf, W. Voigt, T. Kegel, L. P. Mueller, T. Behlendorf, C. Sippel, D. Arnold, and H. J. Schmoll. Bevacizumab in combination with sequential high-dose chemotherapy in solid cancer, a feasibility study. Bone Marrow Transplant., 45 (2010), 1704–1709. [CrossRef] [PubMed] [Google Scholar]
  31. R.S. Kerbel and B.A. Kamen. The anti-angiogenic basis of metronomic chemotherapy. Nature Reviews Cancer, 4 (2004), 423–436. [CrossRef] [PubMed] [Google Scholar]
  32. M. W. Kieran, C. D. Turner, J. B. Rubin, S.N. Chi, M.A. Zimmerman, C. Chordas, G. Klement, A. Laforme, A. Gordon, A. Thomas, D. Neuber, T. Browder, and J. Folkman. A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J. Pediatr. Hematol. Oncol., 27 (2005), No. 11, 573–581. [CrossRef] [PubMed] [Google Scholar]
  33. S. Koscielny, M. Tubiana, M. G. Le, A. J. Valleron, H. Mouriesse, G. Contesso, and D. Sarrazin. Breast cancer : relationship between the size of the primary tumour and the probability of metastatic dissemination. Br. J. Cancer, 49 (1984), 709–715. [CrossRef] [PubMed] [Google Scholar]
  34. J. F. Lu, R. Bruno, S. Eppler, W. Novotny, B. Lum, and J. Gaudreault. Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother. Pharmacol., 62 (2008), 779–786. [Google Scholar]
  35. C. Meille, J. C. Gentet, D. Barbolosi, N. Andre, F. Doz, and A. Iliadis. New adaptive method for phase I trials in oncology. Clin. Pharmacol. Ther., 83 (2008), 873–881. [CrossRef] [PubMed] [Google Scholar]
  36. C. Meille, A. Iliadis, D. Barbolosi, N. Frances, and G. Freyer. An interface model for dosage adjustment connects hematotoxicity to pharmacokinetics. J. Pharmacokinet. Pharmacodyn., 35 (2008), 619–633. [CrossRef] [PubMed] [Google Scholar]
  37. M. Paez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Vinals, M. Inoue, G. Bergers, D. Hanahan, and O. Casanovas. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell, 15 (2009), 220–231. [Google Scholar]
  38. E. Pasquier, M. Kavallaris, and N. Andre. Metronomic chemotherapy : new rationale for new directions. Nat. Rev. Clin. Oncol., 7 (2010), 455–465. [CrossRef] [PubMed] [Google Scholar]
  39. D. A. Reardon, A. Desjardins, K. Peters, S. Gururangan, J. Sampson, J. N. Rich, R. McLendon, J. E. Herndon, J. Marcello, S. Threatt, A. H. Friedman, J. J. Vredenburgh, and H. S. Friedman. Phase II study of metronomic chemotherapy with bevacizumab for recurrent glioblastoma after progression on bevacizumab therapy. J. Neurooncol., 103 (2011), 371–379. [CrossRef] [PubMed] [Google Scholar]
  40. A. R. Reynolds. Potential relevance of bell-shaped and u-shaped dose-responses for the therapeutic targeting of angiogenesis in cancer. Dose-Response, 8 (2010), 253–284. [CrossRef] [Google Scholar]
  41. G. J. Riely, N. A. Rizvi, M. G. Kris, D. T. Milton, D. B. Solit, N. Rosen, E. Senturk, C. G. Azzoli, J. R. Brahmer, F. M. Sirotnak, V. E. Seshan, M. Fogle, M. Ginsberg, Miller V. A., and C. M. Rudin. Randomized phase ii study of pulse erlotinib before or after carboplatin and paclitaxel in current or former smokers with advanced non-small-cell lung cancer. J. Clin. Oncol., 27 (2009), No. 2, 264–270. [CrossRef] [PubMed] [Google Scholar]
  42. D. R. Spigel, P. M. Townley, D. M. Waterhouse, L. Fang, I. Adiguzel, J. E. Huang, D. A. Karlin, L. Faoro, F. A. Scappaticci, and M. A. Socinski. Randomized Phase II Study of Bevacizumab in Combination With Chemotherapy in Previously Untreated Extensive-Stage Small-Cell Lung Cancer : Results From the SALUTE Trial. J. Clin. Oncol., 29 (2011), 2215–2222. [CrossRef] [PubMed] [Google Scholar]
  43. D. Stempak, J. Gammon, J. Halton, A. Moghrabi, G. Koren, and S. Baruchel. A pilot pharmacokinetic and antiangiogenic biomarker study of celecoxib and low-dose metronomic vinblastine or cyclophosphamide in pediatric recurrent solid tumors. J. Pediatr. Hematol. Oncol., 28 (2006), 720–728. [CrossRef] [PubMed] [Google Scholar]
  44. J. Sterba, D. Valik, P. Mudry, T. Kepak, Z. Pavelka, V. Bajciova, K. Zitterbart, V. Kadlecova, and P. Mazanek. Combined biodifferentiating and antiangiogenic oral metronomic therapy is feasible and effective in relapsed solid tumors in children : single-center pilot study. Onkologie, 29 (2006), 308–313. [CrossRef] [PubMed] [Google Scholar]
  45. F. Verga. Modélisation mathématique de processus métastatiques. Ph.D. thesis, Université de Provence, 2010. [Google Scholar]
  46. P. Viens, H. Roche, P. Kerbrat, P. Fumoleau, J. P. Guastalla, and T. Delozier. Epirubicin–docetaxel combination in first-line chemotherapy for patients with metastatic breast cancer : final results of a dose-finding and efficacy study. Am. J. Clin. Oncol., 24 (2001), 328–335. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.