Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 2, 2012
Solitary waves
Page(s) 1 - 12
DOI https://doi.org/10.1051/mmnp/20127201
Published online 29 February 2012
  1. W. Craig, P. Guyenne, C. Sulem. Coupling between internal and surface waves, Natural Hazards, Special Issue on “Internal waves in the oceans and estuaries : modeling and observations”, (2010), doi :10.1007/s11069-010-9535-4, 26pp. [Google Scholar]
  2. W. Craig, P. Guyenne, C. Sulem. A Hamiltonian approach to nonlinear modulation analysis. Wave Motion 47 (2010), 552–563. [CrossRef] [MathSciNet] [Google Scholar]
  3. E. van Groesen, S. R. Pudjaprasetya. Uni-directional waves over slowly varying bottom. I. Derivation of a KdV-type of equation. Wave Motion 18 (1993), 345–370. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. B. Yoon, Philip L.-F. Liu. A note on Hamiltonian for long water waves in varying depth. Wave Motion 20 (1994), 359–370. [CrossRef] [MathSciNet] [Google Scholar]
  5. S.I Dejak, I.M. Segal. Long time dynamics of KdV solitary waves over a variable bottom. Comm. Pure Appl. Math. 59 (2006), 869–905. [CrossRef] [MathSciNet] [Google Scholar]
  6. S.I. Dejak, B.L.G Jonsson. Long time dynamics of variable coefficient mKdV solitary waves. J. Math. Phys. 47 (2006), 072703, 16pp. [Google Scholar]
  7. J. Holmer. Dynamics of KdV solitons in the presence of a slowly varying potential. IMRN (2011), doi :10.1093/imrn/rnq284, 31pp. [Google Scholar]
  8. J. Holmer, G. Perelman, M. Zworski. Effective dynamics of double solitons for perturbed mKdV. Commun. Math. Phys. 305 (2011), 363–425. [CrossRef] [Google Scholar]
  9. C. Munoz. On the soliton dynamics under a slowly varying medium for generalized KdV equations. arxiv.org arXiv :0912.4725 [math.AP] (2009). To appear in Analysis and PDE. [Google Scholar]
  10. W. Abou Salem, J. Fröhlich. Adiabatic theorems for quantum resonances. Commun. Math. Phys. 273 (2007), 651–675. [CrossRef] [Google Scholar]
  11. T. Kato. On the adiabatic theorem of quantum mechanics. Phys. Soc. Jap. 5 (1958), 435–439. [CrossRef] [Google Scholar]
  12. J.E. Avron, A. Elgart. Adiabatic theorem without a gap condition. Commun. Math. Phys. 203 (1999), 445–463. [CrossRef] [Google Scholar]
  13. S. Teufel. A note on the adiabatic theorem without a gap condition. Lett. Math. Phys. 58 (2002), 261–266. [CrossRef] [Google Scholar]
  14. A. Joye. General adiabatic evolution with a gap condition. Commun. Math. Phys. 275 (2007), 139-162. [CrossRef] [Google Scholar]
  15. V. S. Buslaev, C. Sulem. Linear adiabatic dynamics generated by operators with continuous spectrum. Asymptotic Anal. 58 (2008), 17–45. [Google Scholar]
  16. A. Elgart, G. A. Hagedorn. An adiabatic theorem for resonances. Comm. Pure Appl. Math. 64 (2011), 1029–1058. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.L. Bona, P.E. Souganidis, W.A. Strauss. Stability and instability of solitary waves of Korteweg de Vries type. Proc. Roy. Soc. London Ser. A 411 (1987), 395–412. [CrossRef] [MathSciNet] [Google Scholar]
  18. L. Guillopé, M. Zworski. Upper bounds on the number of resonances on noncompact Riemann e surfaces. J. Func. Anal. 129 (1995), 364–389. [CrossRef] [Google Scholar]
  19. T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag New York, 1991. [Google Scholar]
  20. W. Hunziker. Resonances, metastable states and exponential decay laws in perturbation theory. Commun. Math. Phys. 132 (1990), 177. [CrossRef] [Google Scholar]
  21. C.E. Kenig, G. Ponce, L. Vega. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. 46 (1993), 527–620. [CrossRef] [MathSciNet] [Google Scholar]
  22. J. Holmer, M. Zworski. Soliton interaction with slowly varying potentials. IMRN (2008), doi : 10.1093/imrn/rnn026, 36 pp. [Google Scholar]
  23. Y. Martel, F. Merle. Asymptotic stability of solitons for subcritical gKdV equations revisited. Nonlinearity 18 (2005), 55–80. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.