Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 2, 2012
Solitary waves
Page(s) 1 - 12
Published online 29 February 2012
  1. W. Craig, P. Guyenne, C. Sulem. Coupling between internal and surface waves, Natural Hazards, Special Issue on “Internal waves in the oceans and estuaries : modeling and observations”, (2010), doi :10.1007/s11069-010-9535-4, 26pp.
  2. W. Craig, P. Guyenne, C. Sulem. A Hamiltonian approach to nonlinear modulation analysis. Wave Motion 47 (2010), 552–563. [CrossRef] [MathSciNet]
  3. E. van Groesen, S. R. Pudjaprasetya. Uni-directional waves over slowly varying bottom. I. Derivation of a KdV-type of equation. Wave Motion 18 (1993), 345–370. [CrossRef] [MathSciNet]
  4. S. B. Yoon, Philip L.-F. Liu. A note on Hamiltonian for long water waves in varying depth. Wave Motion 20 (1994), 359–370. [CrossRef] [MathSciNet]
  5. S.I Dejak, I.M. Segal. Long time dynamics of KdV solitary waves over a variable bottom. Comm. Pure Appl. Math. 59 (2006), 869–905. [CrossRef] [MathSciNet]
  6. S.I. Dejak, B.L.G Jonsson. Long time dynamics of variable coefficient mKdV solitary waves. J. Math. Phys. 47 (2006), 072703, 16pp.
  7. J. Holmer. Dynamics of KdV solitons in the presence of a slowly varying potential. IMRN (2011), doi :10.1093/imrn/rnq284, 31pp.
  8. J. Holmer, G. Perelman, M. Zworski. Effective dynamics of double solitons for perturbed mKdV. Commun. Math. Phys. 305 (2011), 363–425. [CrossRef]
  9. C. Munoz. On the soliton dynamics under a slowly varying medium for generalized KdV equations. arXiv :0912.4725 [math.AP] (2009). To appear in Analysis and PDE.
  10. W. Abou Salem, J. Fröhlich. Adiabatic theorems for quantum resonances. Commun. Math. Phys. 273 (2007), 651–675. [CrossRef]
  11. T. Kato. On the adiabatic theorem of quantum mechanics. Phys. Soc. Jap. 5 (1958), 435–439. [CrossRef]
  12. J.E. Avron, A. Elgart. Adiabatic theorem without a gap condition. Commun. Math. Phys. 203 (1999), 445–463. [CrossRef]
  13. S. Teufel. A note on the adiabatic theorem without a gap condition. Lett. Math. Phys. 58 (2002), 261–266. [CrossRef]
  14. A. Joye. General adiabatic evolution with a gap condition. Commun. Math. Phys. 275 (2007), 139-162. [CrossRef]
  15. V. S. Buslaev, C. Sulem. Linear adiabatic dynamics generated by operators with continuous spectrum. Asymptotic Anal. 58 (2008), 17–45.
  16. A. Elgart, G. A. Hagedorn. An adiabatic theorem for resonances. Comm. Pure Appl. Math. 64 (2011), 1029–1058. [CrossRef] [MathSciNet]
  17. J.L. Bona, P.E. Souganidis, W.A. Strauss. Stability and instability of solitary waves of Korteweg de Vries type. Proc. Roy. Soc. London Ser. A 411 (1987), 395–412. [CrossRef] [MathSciNet]
  18. L. Guillopé, M. Zworski. Upper bounds on the number of resonances on noncompact Riemann e surfaces. J. Func. Anal. 129 (1995), 364–389. [CrossRef]
  19. T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag New York, 1991.
  20. W. Hunziker. Resonances, metastable states and exponential decay laws in perturbation theory. Commun. Math. Phys. 132 (1990), 177. [CrossRef]
  21. C.E. Kenig, G. Ponce, L. Vega. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. 46 (1993), 527–620. [CrossRef] [MathSciNet]
  22. J. Holmer, M. Zworski. Soliton interaction with slowly varying potentials. IMRN (2008), doi : 10.1093/imrn/rnn026, 36 pp.
  23. Y. Martel, F. Merle. Asymptotic stability of solitons for subcritical gKdV equations revisited. Nonlinearity 18 (2005), 55–80. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.