Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 2, 2012
Solitary waves
Page(s) 13 - 31
DOI https://doi.org/10.1051/mmnp/20127202
Published online 29 February 2012
  1. N. Boussaid, S. Cuccagna. On stability of standing waves of nonlinear Dirac equations. ArXiv e-prints 1103.4452, (2011).
  2. V. S. Buslaev, G. S. Perel'an. Scattering for the nonlinear Schrödinger equation : states that are close to a soliton. St. Petersburg Math. J., 4 (1993), 1111–1142. [MathSciNet]
  3. V. S. Buslaev, C. Sulem. On asymptotic stability of solitary waves for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 419–475. [CrossRef] [MathSciNet]
  4. M. Chugunova. Spectral stability of nonlinear waves in dynamical systems (Doctoral Thesis). McMaster University, Hamilton, Ontario, Canada, 2007.
  5. S. Cuccagna, T. Mizumachi. On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations. Comm. Math. Phys., 284 (2008), 51–77. [CrossRef] [MathSciNet]
  6. A. Comech. On the meaning of the Vakhitov-Kolokolov stability criterion for the nonlinear Dirac equation. ArXiv e-prints, (2011), arXiv :1107.1763.
  7. S. Cuccagna. Stabilization of solutions to nonlinear Schrödinger equations. Comm. Pure Appl. Math., 54 (2001), 1110–1145. [CrossRef] [MathSciNet]
  8. T. Cazenave, L. Vázquez. Existence of localized solutions for a classical nonlinear Dirac field. Comm. Math. Phys., 105 (1986), 35–47. [CrossRef] [MathSciNet]
  9. G. H. Derrick. Comments on nonlinear wave equations as models for elementary particles. J. Mathematical Phys., 5 (1964), 1252–1254. [CrossRef] [MathSciNet]
  10. D. J. Gross, A. Neveu. Dynamical symmetry breaking in asymptotically free field theories. Phys. Rev. D, 10 (1974), 3235–3253. [CrossRef]
  11. V. Georgiev, M. Ohta. Nonlinear instability of linearly unstable standing waves for nonlinear Schrödinger equations. ArXiv e-prints, (2010).
  12. M. Grillakis. Linearized instability for nonlinear Schrödinger and Klein-Gordon equations. Comm. Pure Appl. Math., 41 (1988), 747–774. [CrossRef] [MathSciNet]
  13. L. Gross. The Cauchy problem for the coupled Maxwell and Dirac equations. Comm. Pure Appl. Math., 19 (1966), 1–15. [CrossRef] [MathSciNet]
  14. M. Grillakis, J. Shatah, W. Strauss. Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal., 74 (1987), 160–197. [CrossRef] [MathSciNet]
  15. S. Y. Lee, A. Gavrielides. Quantization of the localized solutions in two-dimensional field theories of massive fermions. Phys. Rev. D, 12 (1975), 3880–3886. [CrossRef]
  16. D. E. Pelinovsky, A. Stefanov. Asymptotic stability of small gap solitons in the nonlinear Dirac equations. ArXiv e-prints, (2010), arXiv :1008.4514.
  17. J. Shatah. Stable standing waves of nonlinear Klein-Gordon equations. Comm. Math. Phys., 91 (1983), 313–327. [CrossRef] [MathSciNet]
  18. J. Shatah. Unstable ground state of nonlinear Klein-Gordon equations. Trans. Amer. Math. Soc., 290 (1985), 701–710. [CrossRef] [MathSciNet]
  19. M. Soler. Classical, stable, nonlinear spinor field with positive rest energy. Phys. Rev. D, 1 (1970), 2766–2769. [CrossRef]
  20. J. Shatah, W. Strauss. Instability of nonlinear bound states. Comm. Math. Phys., 100 (1985), 173–190. [CrossRef] [MathSciNet]
  21. A. Soffer, M. I. Weinstein. Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data. J. Differential Equations, 98 (1992), 376–390. [CrossRef] [MathSciNet]
  22. A. Soffer, M. I. Weinstein. Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations. Invent. Math., 136 (1999), 9–74. [CrossRef] [MathSciNet]
  23. N. G. Vakhitov, A. A. Kolokolov. Stationary solutions of the wave equation in the medium with nonlinearity saturation. Radiophys. Quantum Electron., 16 (1973), 783–789. [CrossRef]
  24. M. I. Weinstein. Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal., 16 (1985), 472–491. [CrossRef] [MathSciNet]
  25. M. I. Weinstein. Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math., 39 (1986), 51–67. [CrossRef] [MathSciNet]
  26. V. Zakharov. Instability of self-focusing of light. Zh. Éksp. Teor. Fiz, 53 (1967), 1735–1743.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.