Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 2, 2012
Solitary waves
Page(s) 32 - 37
Published online 29 February 2012
  1. L. Allen, J. Eberly. Optical Resonance and Two-Level Atoms. Dover, New York, 1987. [Google Scholar]
  2. G. Alzetta, A. Gozzini, L. Moi, G. Orriols. Experimental-method for observation of Rf Transitions and Laser beat resonances in oriented Na vapor. Nuova Cimento, 36 (1976), No. 1, 5–20. [Google Scholar]
  3. A. Baas, J. Karr, H. Eleuch, E. Giacobino. Optical bistability in semiconductor microcavities. Phys. Rev. A, 69 (2004), No. 2, 023809. [CrossRef] [Google Scholar]
  4. A. Bishop, J. Krumhansl, S. Trullinger. Solitons in condensed matter : A paradigm. Physica D, 1 (1980), No. 1, 1-44. [CrossRef] [Google Scholar]
  5. K. Boller, A. Imamogluand, S. Harris. Observation of electromagnetically induced transparency. Phys. Rev. Lett 66 (1991), No. 20, 2593–2596. [Google Scholar]
  6. N. Boutabba, L. Hassine, A. Rihani, H. Bouchriha. Analytic photocurrent transient response of an Al/6T/ITO photovoltaic cell using Volterra series analysis. Synthetic Metals, 139 (2003), No. 2, 227–231. [Google Scholar]
  7. N. Boutabba, L. Hassine, N. Loussaief, F. Kouki, H. Bouchriha. Volterra series analysis of the photocurrent in an Al/6T/ITO photovoltaic device. Organic Electronics, 4 (2003), No. 1, 1–8. [Google Scholar]
  8. N. Boutabba, H. Eleuch, H. Bouchriha. Thermal bath effect on soliton propagation in three level atomic system. Synthetic Metals, 159 (2009), No. 13, 1239–1243. [Google Scholar]
  9. M. Chernodub, Sh. Hu, A. Niemi. Topological solitons and folded proteins. Phys. Rev. E, 82 (2010), No. 1, 011916. [CrossRef] [Google Scholar]
  10. C. Lechner, S. Husa, C. Aichelburg. SU(2) cosmological solitons. Phys. Rev. D, 62 (2000), No. 4, 044047. [CrossRef] [Google Scholar]
  11. G. Dridi, S. Guerin, V. Hakobyan, H Jauslin, H Eleuch. Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses. Phys. Rev A, 80 (2009), No. 4, 043408. [CrossRef] [Google Scholar]
  12. J. Eberly. Transmission of dressed field in 3-level media. Quantum Semiclass. Opt. 7 (1995), No. 3, 373–384. [CrossRef] [Google Scholar]
  13. H. Eleuch, N. Rachid. Autocorrelation function of microcavity-emitting field in the non-linear regime. Eur. Phys. J. D., 57 (2010), No. 2, 259–264. [CrossRef] [EDP Sciences] [Google Scholar]
  14. H. Eleuch. Autocorrelation function of microcavity-emitting field in the linear regime. Eur. Phys. J. D., 48 (2008), No. 1, 139–143. [CrossRef] [EDP Sciences] [Google Scholar]
  15. H. Eleuch. Noise spectra of microcavity-emitting field in the linear regime. Eur. Phys. J. D., 49 (2008), No. 3, 391-395. [CrossRef] [EDP Sciences] [Google Scholar]
  16. H. Eleuch. Quantum trajectories and autocorrelation function in semiconductor microcavity. Applied Mathematics & Information Science 3 (2009), No. 3, 185–196. [Google Scholar]
  17. H. Eleuch, N. Ben Nessib, R. Bennaceur. Quantum Model of emission in weakly non ideal plasma. Eur. Phys. J. D, 29 (2004), No. 3, 391–395. [CrossRef] [EDP Sciences] [Google Scholar]
  18. H. Eleuch, R. Bennaceur. Non linear dissipations and the quantum noise of light in semiconductor microcavities. J. Opt. B : Quantum and Semiclassical Optics, 6 (2004), No. 4, 189–195. [Google Scholar]
  19. H. Eleuch. Photon statistics of light in semiconductor microcavities. J. Phys. B, 41 (2008), No. 5, 055502. [Google Scholar]
  20. H. Eleuch, D. Elser, R. Bennaceur. Soliton propagation in an absorbing three level atomic system. Laser Phys. Lett., 1 (2004), No. 8, 391–396. [CrossRef] [Google Scholar]
  21. H. Eleuch, R. Bennaceur. An optical Soliton pair among absorbing three-level atoms. J. Opt. A : Pure Appl.Opt., 5 (2003), No. 5, 528–533. [CrossRef] [Google Scholar]
  22. E. Giacobino, J. Karrr, G. Messin, H. Eleuch. Quantum optical effects in semiconductor microcavities. C. R. Physique, 3 (2002), No. 1, 41–52. [Google Scholar]
  23. H. Gray, R. Whitley, C. Stroud. Coherent trapping of atomic populations. Optics Letters, 3 (1978), No. 6, 218–220. [Google Scholar]
  24. Y. Guo, C. Kao, E. Li, K. Chiang. Nonlinear Photonics, Series in Photonics, Springer, New York, 2002. [Google Scholar]
  25. H. Jabri, H. Eleuch, T. Djerad. Lifetimes of atomic Rydberg states by autocorrelation function. Laser Phys. Lett., 2 (2005), No. 5, 253–257. [CrossRef] [Google Scholar]
  26. P. Jha, H. Eleuch, Y. Rostovtsev. Coherent control of atomic excitation using off-resonant strong few-cycle pulses. Phys. Rev. A, 82 (2010), No. 4, 045805. [CrossRef] [Google Scholar]
  27. G. Korchemsky, I. Krichever. Solitons in high-energy QCD. Nucl. Phys. B, 505 (1997), No. 1–2, 387-414. [CrossRef] [Google Scholar]
  28. L. Mandel, E. Wolf. Optical Coherence and Quantum Optics, Cambridge University Press, New York, 1995. [Google Scholar]
  29. M. Marklund, D. Tskhakaya, P. Shukla. Quantum electrodynamical shocks and solitons in astrophysical plasmas. Europhys. Lett., 72 (2005), No. 6, 950-954. [CrossRef] [Google Scholar]
  30. G. Messin, J. Karr, H. Eleuch, J. Courty, E. Giacobino. Squeezed states and quantum noise of light in semiconductor microcavities. J. Phys. : Condens. Matter, 11 (1999), No. 31, 6069–6078. [Google Scholar]
  31. Q. Park and H. Shin. Systematic construction of multicomponent optical solitons. Phys. Rev. E, 61 (2000), No. 3, 3093. [CrossRef] [MathSciNet] [Google Scholar]
  32. Y. Rostovstev, H. Eleuch, A. Svidzinsky, H. Li, V. Sautenkov, M. Scully. Generation of maximal coherence in a 2-level system via breaking of adiabaticity. Phys. Rev. A., 79 (2009), No. 6, 063833. [CrossRef] [Google Scholar]
  33. E. Sete and H. Eleuch. Interaction of a quantum well with squeezed light : Quantum statistical properties. Phys. Rev. A, 82 (2010), No. 4, 043810. [CrossRef] [Google Scholar]
  34. M. Wesner, C. Herden, R. Pankrath, D. Kip, P. Moretti. Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium niobate waveguides. Phys. Rev. E, 64 (2001), No. 3, 036613. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.