Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 2, 2012
Solitary waves
Page(s) 38 - 51
Published online 29 February 2012
  1. S. Balasuriya. Vanishing viscosity in the barotropic β–plane. J. Math.Anal. Appl., (1997), 214, 128-150. [Google Scholar]
  2. E. Dewan, R. Picard, R. O’Neil, H. Gardiner, J. Gibson. MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere. Geophys. Res. Lett., (1998), 25, 939-942. [CrossRef] [Google Scholar]
  3. A. Gill. Atmosphere-Ocean Dynamics. New York, etc., Academic Press, 1983. [Google Scholar]
  4. G. Haltiner, R. Williams. Numerical prediction and dynamic meteorology, 1980. [Google Scholar]
  5. P. Hsieh. Application of modflow for oil reservoir simulation during the Deepwater Horizon crisis. Ground Water, (2011), 49 (3), 319-323. [Google Scholar]
  6. J. Lions, R. Teman, S. Wang. On the equations of the large-scale ocean. Nonlinearity, (1992), 5, 1007-1053. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Lions, R. Teman, S. Wang. New formulations of the primitive equations of atmosphere and applications. Nonlinearity, (1992), 5, 237-288. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. McCreary. Easern tropical ocean response to changing wind systems with applications to El Niño. J. Phys, Oceanogr., (1976), 6, 632-645. [Google Scholar]
  9. J. McCreary. A linear stratified ocean model of the equatorial undercurrent. Phil. Trans. Roy. Soc. London., (1981), 302, 385-413. [CrossRef] [Google Scholar]
  10. J. McCreary. E quatorial beams. J. Mar. Res., (1984), 42, 395-430. [CrossRef] [Google Scholar]
  11. P. Müller, G. Holloway, F. Henyey, N. Pomphrey. Nonlinear interactions among internal gravity waves. Rev. Geophys., (1986), 24, 3, 493-536. [NASA ADS] [CrossRef] [Google Scholar]
  12. D. Nethery, D. Shankar. Vertical propagation of baroclinic Kelvin waves along the west coast of India. J. Earth. Syst. Sci., (2007), 116 (4), 331-339. [CrossRef] [Google Scholar]
  13. R. Romea, J. Allen. On vertically propagating coastal Kelvin waves at low latitudes. J. Phys. Oceanogr., (1983), 13 (1), 241-1, 254. [Google Scholar]
  14. D. Shindell, G. Schmidt. Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Res. Lett., (2004), 31, L18209. [Google Scholar]
  15. C. Staquet, J. Sommeria. Internal Gravity Waves : From instabilities to turbulence. Annu. Rev. Fluid Mech., (2002), 34, 559-593. [NASA ADS] [CrossRef] [Google Scholar]
  16. C. Summerhayes, S. Thorpe. Oceanography, An Illustrative Guide, New York : John Willey & Sons, (1996). [Google Scholar]
  17. R. Szoeke, R. Samelson. The duality between the Boussinesq and non-Boussinesq hydrostatic equations of motion. J. Phys. Oceanogr., (2002), 32, 2194-2203. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Timmermann, M. Latif, A. Grotzner, R. Voss, R., Modes of climate variability as simulated by a copled general circulation model. Part I : ENSO-like climate variability and its low-frequency modulation. Climate Dynamics., (1999), 15 (8), 605-618. [CrossRef] [Google Scholar]
  19. G. Watson. A Treatise on the Theory of Bessel Functions, Second edition, Cambridge University Press, (1996)(ISBN-13 : 9780521483919 — ISBN-10 : 0521483913) . [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.