Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 2, 2012
Solitary waves
Page(s) 52 - 65
DOI https://doi.org/10.1051/mmnp/20127205
Published online 29 February 2012
  1. H. Cho, T. Shepherd, V. Vladimirov. Application of the direct Liapunov method to the problem of symmetric stability in the atmosphere. J. Atmosph. Sci., (1993), 50 (6), 822-836. [CrossRef]
  2. W. Craig, P. Guyenne, H. Kalisch. Hamiltonian long-wave expansions for the free surfaces and interfaces. Comm. Pure Appl. Math., (2005), 58, 1587-1641. [CrossRef] [MathSciNet]
  3. E. Dewan, R. Picard, R. O’Neil, H. Gardiner, J. Gibson. MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere. Geophys. Res. Lett., (1998), 25, 939-942. [CrossRef]
  4. S. Dalziel, G. Hughes, B. Sutherland. Whole field density measurements by synthetic schlieren. Experiments in Fluids, (2000), 28, 322-337. [CrossRef]
  5. T. Dauxois, W. Young. Near-critical reflection of internal waves. J. Fluid Mech., (1999), 390, 271-295. [CrossRef] [MathSciNet]
  6. R. Fjortoft. R, Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic circular vortex. Geophys. Publ., (1950), 17(6), 1-52.
  7. M. Flynn, K. Onu, B. Sutherland. Internal wave excitation by a vertically oscillating sphere. J. Fluid Mech., (2003), 494, 65-93. [CrossRef] [MathSciNet]
  8. C. Garrett. Internal tides and ocean mixing. Science, (2003), 301 (5641), 1858-1859, doi :10.1126/science.1090002.
  9. C. Garrett, W. Munk. Space time scale of internal waves. A progress report. J. Geophys. Res., (1975), 80, 291-297. [CrossRef]
  10. A. Gill. Atmosphere-Ocean Dynamics. New York, etc., Academic Press, (1983).
  11. J. Hadamard. Lectures on Cauchy’s problem in linear partial differential equations. Yale University Press, New Haven, (1983).
  12. J. Hadamard. The problem of diffusion of waves. Annals of Mathematics, Ser. 2 43 : 510-522, (1942).
  13. N. Ibragimov. Elementary Lie group analysis of ordinary differential equations. John Wiley & Sons, Chichester, (1999).
  14. N. Ibragimov. Transformation Groups Applied to Mathematical Physics. Nauka, Moscow (1983), English. transl., Reidel, Dordrecht.
  15. N. Ibragimov Ed. CRC Handbook of Lie group analysis of differential equations (CRC Press, Boca Raton) ; Vol. 1 (1994, 429 p), Vol. 2 (1995, 546 p.), Vol. 3 (1996, 536 p.).
  16. N. Ibragimov. A new conservation theorem J. Math. Anal. Appl., (2007), 333 : 311-328. [CrossRef]
  17. N. Ibragimov. Group analysis - a microscope of mathematical modelling. I : Galilean relativity in diffusion models. Selected works (ALGA Publications, Karlskrona), (2006), 2 : 225-243.
  18. N. Ibragimov. Conformal invariance and Huygens’ principle. Soviet Mathematics Doklady, (1970), 11(5) : 1153-1157.
  19. N. Ibragimov. Application of group analysis to liquid metal systems. Archives of ALGA, (2010), 6 : 91-101.
  20. N. Ibragimov. Lie group analysis of Moffatt’s model in metallurgical industry. Nonlinear Math. Phys., (2011), 18, 143-162. [CrossRef] [MathSciNet]
  21. N. Ibragimov, R. Ibragimov, V. Kovalev. Group analysis of nonlinear internal waves in oceans. Archives of ALGA, (2009), 6, 45-54.
  22. N. Ibragimov, R. Ibragimov. Applications of Lie Group Analysis in Geophysical Fluid Dynamics. Series on Complexity, Nonlinearity and Chaos, (2011), Vol 2, World Scientific Publishers, ISBN : 978-981-4340-46-5.
  23. N. Ibragimov, R. Ibragimov. Internal gravity wave beams as invariant solutions of Boussinesq equations in geophysical fluid dynamics. Comm. Nonlinear Sci. Num. Simulat., (2010), 15, 1989-2002. [CrossRef]
  24. R. Ibragimov. Oscillatory nature and dissipation of the internal wave energy spectrum in the deep ocean. Eur. Phys. J. Appl. Phys., (2007), 40, 315-334. [CrossRef] [EDP Sciences]
  25. R. Ibragimov. Generation of internal tides by an oscillating background flow along a corrugated slope. Phys. Scr., (2008), 78, 065801. [CrossRef]
  26. R. Ibragimov, D. Pelinovsky. Incompressible viscous fluid flows in a thin spherical shell. J. Math. Fluid. Mech., (2009), 11, 60-90. [CrossRef] [MathSciNet]
  27. R. Ibragimov, N. Ibragimov. Effects of rotation on self-resonant internal gravity waves. Ocean Modelling, (2010), 31, 80-87. [CrossRef]
  28. R. Ibragimov, M. Dameron. Spinning phenomena and energetics of spherically pulsating patterns in stratified fluids. Phys. Scr., (2011), 84, 015402. [CrossRef]
  29. A. Javam, J. Imberger, S. Armfield. Numerical study of internal wave-wave interactions in a stratified fluid. J. Fluid Mech., (2000), 415, 65-87. [CrossRef] [MathSciNet]
  30. H. Kalisch, N. Nguyen. On the stability of internal waves. J. Phys. A, (2010), 43, 495205. [CrossRef] [MathSciNet]
  31. H. Kalisch, J. Bona. Modes for internal waves in deep water. Disc. Cont. Dyn. Sys. (2000), 6, 1-19. [CrossRef]
  32. A. Kistovich, Y. Chashechkin. Nonlinear interactions of two dimensional packets of monochromatic internal waves. Izv. Atmos. Ocean. Phys., (1991), 27 (12) 946-951.
  33. F. Lam, L. Mass, T. Gerkema. Spatial structure of tidal and residual currents as observed over the shelf break in the Bay of Biscay. Deep-See Res., (2004), I 51, 10751096.
  34. P. Lombard, J. Riley. On the breakdown into turbulence of propagating internal waves. Dyn. Atmos. Oceans, (1996), 23, 345-355. [CrossRef]
  35. H. Moffatt. High frequency excitation of liquid metal systems. Metallurgical Applications of Magnetohydrodynamics, (1984), (Metals Society, London) 180-189.
  36. P. Müller, G. Holloway, F. Henyey, N. Pomphrey. Nonlinear interactions among internal gravity waves. Rev. Geophys., (1986), 24, 3, 493-536. [NASA ADS] [CrossRef]
  37. J. Nash, E. Kunze, C. Lee, T. Sanford. Structure of the baroclinic tide generated at Keana Ridge, Hawaii. J. Phys. Oceanogr., (2006), 36, 1123-1135. [CrossRef]
  38. P. Olver. Applications of Lie groups to differential equations. Springer-Verlag, New York, 2nd ed. 1993.
  39. L. Ovsyannikov. Group Analysis of Differential Equations. Nauka, Moscow, (1978), English transl., ed. W.F. Ames, Academic Press, New York (1982).
  40. D. Ramsden, G. Holloway. Energy transfers across an internal wave-vortical mode spectrum. J. Geophys. Res., (1992), 97, 3659-3668. [CrossRef]
  41. J. Riley, R. Metcalfe, M. Weissman. Direct numerical simulations of homogeneous turbulence in density-stratified fluids. Nonlinear properties of internal waves, (1981), 76, edited by B.J. West, pp. 79-112, Americal Institute of Physics, New York.
  42. T. Shepherd. Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Advances in Geophysics, (1990), 32, 287-338 [CrossRef]
  43. C. Staquet, J. Sommeria. Internal Gravity Waves : From instabilities to turbulence. Annu. Rev. Fluid Mech., (2002), 34, 559-593. [NASA ADS] [CrossRef]
  44. A. Tabaei, T. Akylas, K. Lamb. Nonlinear effects in reflecting and colliding internal wave beams. J. Fluid Mech., (2005), 526, 217-243. [CrossRef] [MathSciNet]
  45. A. Tabaei, T. Akylas. Nonlinear internal gravity wave beams. J. Fluid Mech., (2003), 482, 141-161. [CrossRef] [MathSciNet]
  46. S. Teoh, J. Imberger, G. Ivey. Laboratory study of the interactions between two internal wave rays. J. Fluid Mech., (1997), 336:91. [CrossRef]
  47. K. Winters, E. D’Asaro. Direct simulation of internal wave energy transfer. J. Phys. Oceanogr., (1997), 9, 235-243.
  48. C. Wunsch, R. Ferrari. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., (2004), 36, 281-314. [CrossRef]
  49. H. Zhang, B. King, H. Swinney. Resonant generation of internal waves on a model continental slope. Phys. Rev. Let., (2008), 100, 244504. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.