Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 7, Number 2, 2012
Solitary waves
|
|
---|---|---|
Page(s) | 66 - 76 | |
DOI | https://doi.org/10.1051/mmnp/20127206 | |
Published online | 29 February 2012 |
- M. Agueh. A new ODE approach to sharp Sobolev inequalities. Nonlinear Analysis Research Trends. Nova Science Publishers, Inc. Editor : Inès N. Roux, pp. 1–13 (2008). [Google Scholar]
- T. Aubin. Problème isopérimétrique et espaces de Sobolev, J. Differential Geometry. 11, pp. 573–598 (1976). [Google Scholar]
- C. Chen, H. Yao, L. Shao. Global Existence, Uniqueness, and Asymptotic Behavior of Solution for p-Laplacian Type Wave Equation. Journal of Inequalities and Applications Volume 2010, Article ID 216760, 15 pages. [Google Scholar]
- V.A. Galaktionov, S.I. Pohozaev. Blow-up and critical exponents for nonlinear hyperbolic equations. Nonlinear Analysis 53, pp. 453–466 (2003). [Google Scholar]
- G. Hongjun, Z. Hui. Global nonexistence of the solutions for a nonlinear wave equation with the q-Laplacian operator. J. Partial Diff. Eqs. 20 pp. 71–79(2007) . [Google Scholar]
- S. Ibrahim, N. Masmoudi, K. Nakanishi. Scattering threshold for the focusing nonlinear Klein-Gordon equation. Analysis and PDE 4, No. 3, pp. 405–460, 2011. [Google Scholar]
- C. E. Kenig, F. Merle. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166, No. 3, pp. 645–675 (2006). [Google Scholar]
- C. E. Kenig, F. Merle. Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201, No. 2, pp. 147–212 (2008). [Google Scholar]
- J. Shatah. Unstable ground state of nonlinear Klein-Gordon equations. Trans. Amer. Math. Soc. 290, No. 2, pp. 701–710 (1985). [Google Scholar]
- G. Talenti. Best constants in Sobolev inequality. Ann. Mat. Pura Appl. 110, pp. 353–372 (1976). [Google Scholar]
- Z. Wilstein. Global Well-Posedness for a Nonlinear Wave Equation with p-Laplacian Damping. Ph.D. thesis, University of Nebraska. http://digitalcommons.unl.edu/mathstudent/24 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.