Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 2, 2012
Solitary waves
Page(s) 77 - 82
Published online 29 February 2012
  1. M. Bjørkavåg, H. Kalisch. Wave breaking in Boussinesq models for undular bores. Phys. Lett. A, 375 (2011), 157–1578. [Google Scholar]
  2. A. Constantin, M. Ehrnström, E. Wahlén. Symmetry of steady periodic gravity water waves with vorticity. Duke Math. J., 140 (2007), 591–603. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Constantin, W. Strauss. Exact steady periodic water waves with vorticity. Comm. Pure Appl. Math., 57 (2004), 481–527. [CrossRef] [MathSciNet] [Google Scholar]
  4. W. Craig. Non-existence of solitary water waves in three dimensions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 360 (2002), 2127–2135. [CrossRef] [Google Scholar]
  5. P.G. Drazin, W.H. Reid. Hydrodynamic stability. Cambridge University Press, Cambridge, 2004. [Google Scholar]
  6. M.-L. Dubreil-Jacotin. Sur la détermination rigoureuse des ondes permanentes périodiques d’ampleur finie. J. Math. Pures Appl., 13 (1934), 217–291. [Google Scholar]
  7. M.-L. Dubreil-Jacotin. Sur les théorèmes d’existence relatifs aux ondes permanentes périodiques ’a deux dimensions dans les liquides hétérogènes. J. Math. Pures Appl., 16 (1937), 43–67. [Google Scholar]
  8. M. Ehrnström. A note on surface profiles for symmetric gravity waves with vorticity. J. Nonlinear Math. Phys., 13 (2006), 1–8. [CrossRef] [Google Scholar]
  9. M. Ehrnström. Uniqueness for steady periodic water waves with vorticity. Int. Math. Res. Not., 2005 (2005), 3721–3726. [CrossRef] [Google Scholar]
  10. L.E. Fraenkel. On Kelvin-Stuart vortices in a viscous fluid. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366 (2008), 2717–2728. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Friedlander, W. Strauss, M. Vishik. Nonlinear instability in an ideal fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 187–209. [CrossRef] [MathSciNet] [Google Scholar]
  12. D. Gilbarg, N.S. Trudinger. Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften 224, Springer, Berlin-New York, 1977. [Google Scholar]
  13. O. Goubet. A relation between the pressure gradient and the flux for the general channel flow problem. Appl. Math. Optim., 34 (1996), 361–365. [CrossRef] [MathSciNet] [Google Scholar]
  14. B. Hof, C.W.H. van Doorne, J. Westerweel, F.T.M. Nieuwstadt, H. Faisst, B. Eckhardt, H. Wedin, R.R. Kerswell, F. Waleffe. Experimental Observation of Nonlinear Traveling Waves in Turbulent Pipe Flow. Science, 10 (2004), 1594–1598. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  15. V.M Hur, Z. Lin. Unstable surface waves in running water. Comm. Math. Phys., 282 (2008), 733–796. [CrossRef] [MathSciNet] [Google Scholar]
  16. N.H. Ibragimov, R Aitbayev, R.N. Ibragimov. Three-dimensional nonlinear rotating surface waves in channels of variable depth in the presence of formation of a small perturbation of atmospheric pressure across the channel. Commun. Nonlinear Sci. and Numer. Simul., 14 (2009), 3811–3820. [CrossRef] [MathSciNet] [Google Scholar]
  17. R.N. Ibragimov, D.E. Pelinovsky. Three-dimensional gravity waves in a channel of variable depth. Commun. Nonlinear Sci. and Numer. Simul., 13 (2008), 2104–2113. [CrossRef] [MathSciNet] [Google Scholar]
  18. H. Kalisch. Periodic traveling water waves with isobaric streamlines. J. Nonlinear Math. Phys., 11 (2004), 461–471. [CrossRef] [MathSciNet] [Google Scholar]
  19. H. Kalisch. A uniqueness result for periodic traveling waves in water of finite depth. Nonlinear Anal., 58 (2004), 779–785. [CrossRef] [MathSciNet] [Google Scholar]
  20. W. Thomson. On disturbing infinity in Lord Rayleigh’s solution for waves in a plane vortex stratum. Nature, 23 (1880), 45–46. [CrossRef] [Google Scholar]
  21. H. Lamb. Hydrodynamics. Cambridge University Press, London, 1924. [Google Scholar]
  22. P. Moin, J. Kim. Numerical investigation of turbulent channel flow. J. Fluid Mech., 118 (1982), 341–377. [CrossRef] [Google Scholar]
  23. A.E. Trefethen, L.N. Trefethen, P.J. Schmid. Spectra and pseudospectra for pipe Poiseuille flow. Comput. Methods Appl. Mech. Engrg., 175 (1999), 413–420. [CrossRef] [MathSciNet] [Google Scholar]
  24. E. Wahlén. Steady water waves with a critical layer. J. Differential Equations, 246 (2009), 2468–2483. [CrossRef] [MathSciNet] [Google Scholar]
  25. F. Waleffe. Homotopy of exact coherent structures in plane shear flows. Phys. Fluids, 15 (2003), 1517–1534. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  26. P.O. Åsén, G. Kreiss. On a rigorous resolvent estimate for plane Couette flow. J. Math. Fluid Mech., 9 (2007), 153–180. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.