Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 2, 2012
Solitary waves
Page(s) 77 - 82
DOI https://doi.org/10.1051/mmnp/20127207
Published online 29 February 2012
  1. M. Bjørkavåg, H. Kalisch. Wave breaking in Boussinesq models for undular bores. Phys. Lett. A, 375 (2011), 157–1578.
  2. A. Constantin, M. Ehrnström, E. Wahlén. Symmetry of steady periodic gravity water waves with vorticity. Duke Math. J., 140 (2007), 591–603. [CrossRef] [MathSciNet]
  3. A. Constantin, W. Strauss. Exact steady periodic water waves with vorticity. Comm. Pure Appl. Math., 57 (2004), 481–527. [CrossRef] [MathSciNet]
  4. W. Craig. Non-existence of solitary water waves in three dimensions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 360 (2002), 2127–2135. [CrossRef]
  5. P.G. Drazin, W.H. Reid. Hydrodynamic stability. Cambridge University Press, Cambridge, 2004.
  6. M.-L. Dubreil-Jacotin. Sur la détermination rigoureuse des ondes permanentes périodiques d’ampleur finie. J. Math. Pures Appl., 13 (1934), 217–291.
  7. M.-L. Dubreil-Jacotin. Sur les théorèmes d’existence relatifs aux ondes permanentes périodiques ’a deux dimensions dans les liquides hétérogènes. J. Math. Pures Appl., 16 (1937), 43–67.
  8. M. Ehrnström. A note on surface profiles for symmetric gravity waves with vorticity. J. Nonlinear Math. Phys., 13 (2006), 1–8. [CrossRef]
  9. M. Ehrnström. Uniqueness for steady periodic water waves with vorticity. Int. Math. Res. Not., 2005 (2005), 3721–3726. [CrossRef]
  10. L.E. Fraenkel. On Kelvin-Stuart vortices in a viscous fluid. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366 (2008), 2717–2728. [CrossRef] [MathSciNet]
  11. S. Friedlander, W. Strauss, M. Vishik. Nonlinear instability in an ideal fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 187–209. [CrossRef] [MathSciNet]
  12. D. Gilbarg, N.S. Trudinger. Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften 224, Springer, Berlin-New York, 1977.
  13. O. Goubet. A relation between the pressure gradient and the flux for the general channel flow problem. Appl. Math. Optim., 34 (1996), 361–365. [CrossRef] [MathSciNet]
  14. B. Hof, C.W.H. van Doorne, J. Westerweel, F.T.M. Nieuwstadt, H. Faisst, B. Eckhardt, H. Wedin, R.R. Kerswell, F. Waleffe. Experimental Observation of Nonlinear Traveling Waves in Turbulent Pipe Flow. Science, 10 (2004), 1594–1598. [NASA ADS] [CrossRef] [PubMed]
  15. V.M Hur, Z. Lin. Unstable surface waves in running water. Comm. Math. Phys., 282 (2008), 733–796. [CrossRef] [MathSciNet]
  16. N.H. Ibragimov, R Aitbayev, R.N. Ibragimov. Three-dimensional nonlinear rotating surface waves in channels of variable depth in the presence of formation of a small perturbation of atmospheric pressure across the channel. Commun. Nonlinear Sci. and Numer. Simul., 14 (2009), 3811–3820. [CrossRef] [MathSciNet]
  17. R.N. Ibragimov, D.E. Pelinovsky. Three-dimensional gravity waves in a channel of variable depth. Commun. Nonlinear Sci. and Numer. Simul., 13 (2008), 2104–2113. [CrossRef] [MathSciNet]
  18. H. Kalisch. Periodic traveling water waves with isobaric streamlines. J. Nonlinear Math. Phys., 11 (2004), 461–471. [CrossRef] [MathSciNet]
  19. H. Kalisch. A uniqueness result for periodic traveling waves in water of finite depth. Nonlinear Anal., 58 (2004), 779–785. [CrossRef] [MathSciNet]
  20. W. Thomson. On disturbing infinity in Lord Rayleigh’s solution for waves in a plane vortex stratum. Nature, 23 (1880), 45–46. [CrossRef]
  21. H. Lamb. Hydrodynamics. Cambridge University Press, London, 1924.
  22. P. Moin, J. Kim. Numerical investigation of turbulent channel flow. J. Fluid Mech., 118 (1982), 341–377. [CrossRef]
  23. A.E. Trefethen, L.N. Trefethen, P.J. Schmid. Spectra and pseudospectra for pipe Poiseuille flow. Comput. Methods Appl. Mech. Engrg., 175 (1999), 413–420. [CrossRef] [MathSciNet]
  24. E. Wahlén. Steady water waves with a critical layer. J. Differential Equations, 246 (2009), 2468–2483. [CrossRef] [MathSciNet]
  25. F. Waleffe. Homotopy of exact coherent structures in plane shear flows. Phys. Fluids, 15 (2003), 1517–1534. [NASA ADS] [CrossRef] [MathSciNet]
  26. P.O. Åsén, G. Kreiss. On a rigorous resolvent estimate for plane Couette flow. J. Math. Fluid Mech., 9 (2007), 153–180. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.