Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 2, 2012
Solitary waves
Page(s) 83 - 94
Published online 29 February 2012
  1. I.S. Aranson, L. Kramer. The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys., 74 (2002), 99–143. [Google Scholar]
  2. I.V. Barashenkov, M.M. Bogdan, V.I. Korobov. Stability diagram of the phase-locked solitons in the parametrically driven, damped nonlinear Schrödinger equation. Europhys. Lett., 15 (1991), 113-118. [CrossRef] [Google Scholar]
  3. I.V. Barashenkov, Yu.S. Smirnov. Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons. Phys. Rev. E, 54 (1996), 5707-5725. [Google Scholar]
  4. I.V. Barashenkov, Yu.S. Smirnov, N.V. Alexeeva. Bifurcation to multisoliton complexes in the ac-driven, damped nonlinear Schrödinger equation. Phys. Rev. E, 57 (1998), 2350-2364. [CrossRef] [MathSciNet] [Google Scholar]
  5. I.V. Barashenkov, E.V. Zemlyanaya. Stable complexes of parametrically driven, damped nonlinear Schrödinger solitons. Phys. Rev. Lett., 83 (1999), 2568-2571. [CrossRef] [Google Scholar]
  6. I.V. Barashenkov, E.V. Zemlyanaya. Soliton complexity in the damped-driven nonlinear Schrödinger equation : Stationary to periodic to quasiperiodic complexes. Phys. Rev. E, 83 (2011), 056610. [CrossRef] [Google Scholar]
  7. M. Bondila, I.V. Barashenkov, M.M. Bogdan. Topography of attractors of the parametrically driven nonlinear Schrödinger equation. Physica D, 87 (1995), 314-320. [CrossRef] [Google Scholar]
  8. S. Chávez Cerda, S.B. Cavalcanti, J.M. Hickmann. A variational approach of nonlinear dissipative pulse propagation. Eur. Phys. J. D, 1 (1998), 313–316. [CrossRef] [EDP Sciences] [Google Scholar]
  9. S.H. Davis. Theory of Solidification. Cambridge University Press, Cambridge, 2001. [Google Scholar]
  10. A.A. Golovin, A.A. Nepomnyashchy. Feedback control of subcritical oscillatory instabilities. Phys. Rev. E, 73 (2006), 046212. [CrossRef] [MathSciNet] [Google Scholar]
  11. L.M. Hocking, K. Stewartson. On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance. Proc. Roy. Soc. Lond. A, 326 (1972), 289–313. [Google Scholar]
  12. Y. Kanevsky, A.A. Nepomnyashchy. Stability and nonlinear dynamics of solitary waves generated by subcritical oscillatory instability under the action of feedback control. Phys. Rev. E, 76 (2007), 066305. [CrossRef] [MathSciNet] [Google Scholar]
  13. Y. Kanevsky, A.A. Nepomnyashchy. Dynamics of solitary waves generated by subcritical instability under the action of delayed feedback control. Physica D, 239 (2010), 87-94. [CrossRef] [MathSciNet] [Google Scholar]
  14. B.A. Malomed. Variational methods in nonlinear fiber optics and related fields. Progress in Optics, 43 (2002), 69–191. [Google Scholar]
  15. J.D. Moores. On the Ginzburg-Landau laxer mode-locking model with 5th order saturable absorber term. Opt. Commun., 96 (1993), 65–70. [CrossRef] [Google Scholar]
  16. A.A. Nepomnyashchy, A.A. Golovin, V. Gubareva, V. Panfilov. Global feedback control of a long-wave morphological instability. Physica D, 199 (2004), 61–81. [CrossRef] [MathSciNet] [Google Scholar]
  17. K. Nozaki, N. Bekki. Exact solutions of the generalized Ginzburg-Landau equation. J. Phys. Soc. Jpn., 53 (1984), 1581–1582. [Google Scholar]
  18. N.R. Pereira, L. Stenflo. Nonlinear Schrödinger equation including growth and damping. Phys. Fluids, 20 (1977), 1733–1734. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Popp, O. Stiller, E. Kuznetsov, L. Kramer. The cubic complex Ginzburg-Landau equation for a backward bifurcation. Physica D, 114 (1998), 81–107. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.A. Powell, P.K. Jakobsen. Localized states in fluid convection and multiphoton lasers. Physica D, 64 (1993), 132–152. [CrossRef] [Google Scholar]
  21. B.Y. Rubinstein, A.A. Nepomnyashchy, A.A. Golovin. Stability of localized solutions in a subcritically unstable pattern-forming system under a global delayed control. Phys. Rev. E, 75 (2007), 046213. [CrossRef] [MathSciNet] [Google Scholar]
  22. W. Schöpf, L. Kramer. Small-amplitude periodic and chaotic solutions of the complex Ginzburg-Landau equation for a subcritical bifurcation. Phys. Rev. Lett., 66 (1991), 2316–2319. [CrossRef] [PubMed] [Google Scholar]
  23. W. Schöpf, W. Zimmermann. Convection in binary fluids - amplitude equations, codimension-2 bifurcation, and thermal fluctuations. Phys. Rev. E, 47 (1993), 1739–1764. [CrossRef] [MathSciNet] [Google Scholar]
  24. V. Skarka, N.B. Aleksić. Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations. Phys. Rev. Lett., 96 (2006), 013903. [CrossRef] [PubMed] [Google Scholar]
  25. E.N. Tsoy, A. Ankiewicz, N. Akhmediev. Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation. Phys. Rev. E, 73 (2006), 036621. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.