Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 2, 2012
Solitary waves
Page(s) 83 - 94
Published online 29 February 2012
  1. I.S. Aranson, L. Kramer. The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys., 74 (2002), 99–143. [CrossRef]
  2. I.V. Barashenkov, M.M. Bogdan, V.I. Korobov. Stability diagram of the phase-locked solitons in the parametrically driven, damped nonlinear Schrödinger equation. Europhys. Lett., 15 (1991), 113-118. [CrossRef]
  3. I.V. Barashenkov, Yu.S. Smirnov. Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons. Phys. Rev. E, 54 (1996), 5707-5725. [CrossRef]
  4. I.V. Barashenkov, Yu.S. Smirnov, N.V. Alexeeva. Bifurcation to multisoliton complexes in the ac-driven, damped nonlinear Schrödinger equation. Phys. Rev. E, 57 (1998), 2350-2364. [CrossRef] [MathSciNet]
  5. I.V. Barashenkov, E.V. Zemlyanaya. Stable complexes of parametrically driven, damped nonlinear Schrödinger solitons. Phys. Rev. Lett., 83 (1999), 2568-2571. [CrossRef]
  6. I.V. Barashenkov, E.V. Zemlyanaya. Soliton complexity in the damped-driven nonlinear Schrödinger equation : Stationary to periodic to quasiperiodic complexes. Phys. Rev. E, 83 (2011), 056610. [CrossRef]
  7. M. Bondila, I.V. Barashenkov, M.M. Bogdan. Topography of attractors of the parametrically driven nonlinear Schrödinger equation. Physica D, 87 (1995), 314-320. [CrossRef]
  8. S. Chávez Cerda, S.B. Cavalcanti, J.M. Hickmann. A variational approach of nonlinear dissipative pulse propagation. Eur. Phys. J. D, 1 (1998), 313–316. [CrossRef] [EDP Sciences]
  9. S.H. Davis. Theory of Solidification. Cambridge University Press, Cambridge, 2001.
  10. A.A. Golovin, A.A. Nepomnyashchy. Feedback control of subcritical oscillatory instabilities. Phys. Rev. E, 73 (2006), 046212. [CrossRef] [MathSciNet]
  11. L.M. Hocking, K. Stewartson. On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance. Proc. Roy. Soc. Lond. A, 326 (1972), 289–313. [CrossRef]
  12. Y. Kanevsky, A.A. Nepomnyashchy. Stability and nonlinear dynamics of solitary waves generated by subcritical oscillatory instability under the action of feedback control. Phys. Rev. E, 76 (2007), 066305. [CrossRef] [MathSciNet]
  13. Y. Kanevsky, A.A. Nepomnyashchy. Dynamics of solitary waves generated by subcritical instability under the action of delayed feedback control. Physica D, 239 (2010), 87-94. [CrossRef] [MathSciNet]
  14. B.A. Malomed. Variational methods in nonlinear fiber optics and related fields. Progress in Optics, 43 (2002), 69–191.
  15. J.D. Moores. On the Ginzburg-Landau laxer mode-locking model with 5th order saturable absorber term. Opt. Commun., 96 (1993), 65–70. [CrossRef]
  16. A.A. Nepomnyashchy, A.A. Golovin, V. Gubareva, V. Panfilov. Global feedback control of a long-wave morphological instability. Physica D, 199 (2004), 61–81. [CrossRef] [MathSciNet]
  17. K. Nozaki, N. Bekki. Exact solutions of the generalized Ginzburg-Landau equation. J. Phys. Soc. Jpn., 53 (1984), 1581–1582. [CrossRef] [MathSciNet]
  18. N.R. Pereira, L. Stenflo. Nonlinear Schrödinger equation including growth and damping. Phys. Fluids, 20 (1977), 1733–1734. [CrossRef] [MathSciNet]
  19. S. Popp, O. Stiller, E. Kuznetsov, L. Kramer. The cubic complex Ginzburg-Landau equation for a backward bifurcation. Physica D, 114 (1998), 81–107. [CrossRef] [MathSciNet]
  20. J.A. Powell, P.K. Jakobsen. Localized states in fluid convection and multiphoton lasers. Physica D, 64 (1993), 132–152. [CrossRef]
  21. B.Y. Rubinstein, A.A. Nepomnyashchy, A.A. Golovin. Stability of localized solutions in a subcritically unstable pattern-forming system under a global delayed control. Phys. Rev. E, 75 (2007), 046213. [CrossRef] [MathSciNet]
  22. W. Schöpf, L. Kramer. Small-amplitude periodic and chaotic solutions of the complex Ginzburg-Landau equation for a subcritical bifurcation. Phys. Rev. Lett., 66 (1991), 2316–2319. [CrossRef] [PubMed]
  23. W. Schöpf, W. Zimmermann. Convection in binary fluids - amplitude equations, codimension-2 bifurcation, and thermal fluctuations. Phys. Rev. E, 47 (1993), 1739–1764. [CrossRef] [MathSciNet]
  24. V. Skarka, N.B. Aleksić. Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations. Phys. Rev. Lett., 96 (2006), 013903. [CrossRef] [PubMed]
  25. E.N. Tsoy, A. Ankiewicz, N. Akhmediev. Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation. Phys. Rev. E, 73 (2006), 036621. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.