Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 3, 2012
Page(s) 49 - 61
Published online 06 June 2012
  1. R. Cattaneo, A. Schmid, D. Eschle, K. Baczko, V. T. Meulen, M. A. Billeter. Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55 (1988), 255-265. [CrossRef] [PubMed] [Google Scholar]
  2. W. F. Carman, A. R. Zannetti, P. Karayiannis, J. Waters, G. Manzillo, E. Tanzi, A. J. Zuckermann, H. C. Thomas. Vaccine-induced escape mutant of hepatitis B virus. Lancet 336 (1990), 325-329. [CrossRef] [PubMed] [Google Scholar]
  3. S. Sato, K. Suzuki, Y. Akahane, K. Akiyama, K. Yunomura, F. Tsuda, T. Tanaka, H. Okamoto, Y. Miyakawa, M. Mayumi. Hepatitis B virus strains with mutations in the core promoter in patients with fulminant hepatitis. Ann. Internal Medicine 122 (1995), 241-248. [Google Scholar]
  4. W. N. Chen, C. J. Oon. Hepatitis B virus surface antigen (HBsAg) mutants in Singapore adult and vaccinated children with high anti-hepatitis B virus antibody levels but negative for HBsAg. J. Clin. Microbiol. 38 (2000), 2793-2794. [PubMed] [Google Scholar]
  5. J. J. Eron, P. L. Vernazza, D. M. Johnston, F. Seillier-Moiseiwitsch, T. M. Alcorn, S. A. Fiscus, M. S. Cohen. Resistance of HIV-1 to antiretroviral agents in blood and seminal plasma : Implications for transmission. AIDS 15 (1998), 181-189. [CrossRef] [Google Scholar]
  6. G. D. Ebel, A. P. Dupuis, K. Ngo, D. Nicholas, E. Kauffman, S. A. Jones, D. Young, J. Maffei, P. Y. Shi, K. Bernard, L. D. Kramer. Partial genetic characterization of West Nile virus strains, New York State, 2000. Emerg. Infec. Dis. 7 (2000), 650-653. [Google Scholar]
  7. P. K. Cassiday, G. N. Sanden, K. Heuvelman, F. R. Mooi, K. M. Bisgard, T. Popovic. Polymorphism in Bordetella pertussis pertactin and pertussis toxin virulence factors in the United States. J. Infect. Dis. 182 (2000), 1402-1408. [CrossRef] [PubMed] [Google Scholar]
  8. C. Weber, C. Boursaux-Eude, G. Coralie, V. Caro, N. Guiso. Polymorphism of Bordetella pertussis isolates circulating for the last 10 years in France, where a single effective whole-cell vaccine has been used for more than 30 years. J. Clin. Microbiol. 12 (2001), 4396-4403. [CrossRef] [Google Scholar]
  9. S. Gupta, K. Trenholme, R. M. Anderson, K. P. Day. Antigenic diversity and the transmission dynamics of Plasmodium falciparum. Science 263 (1994), 961-963. [CrossRef] [PubMed] [Google Scholar]
  10. P. Palese, J. F. Young. Variation of influenza A, B, and C viruses. Science 215 (1982), 1486-1474. [CrossRef] [PubMed] [Google Scholar]
  11. R. G. Webster. Influenza : An emerging disease. Emerg. Infec. Dis. 4 (1998), 436-441. [CrossRef] [Google Scholar]
  12. J. Davies, E. Grilli, A. Smith. Influenza A : infection and reinfection. J. Hyg.(Cambridge) 92, 125-127. [Google Scholar]
  13. H. Larson, D. Tyrrell, C. Bowker, C. Potter, G. Schild. Immunity to challenge in volunteers vaccinated with an inactivated current or earlier strain of influenza A(H3N2). J. Hyg. (Cambridge) 80, 243-248. [Google Scholar]
  14. A. L. Frank, L. H. Taber, J. M. Wells. Individuals infected with two subtypes of influenza A virus in the same season. J. Infect. Dis. 147 (1983), 120-124. [CrossRef] [PubMed] [Google Scholar]
  15. T. Sonoguchi, H. Naito, M. Hara, Y. Takeuchi, H. Fukumi. Cross-subtype protection in humans during sequential, overlapping and/or concurrent epidemics caused by H3N2 and H1N1 influenza viruses. J. Infect. Dis. 151 (1985), 81-88. [CrossRef] [PubMed] [Google Scholar]
  16. C. Castillo-Chavez, H. W. Hethcote, V. Andreasen, S. A. Levin, W. M. Liu. Epidemiological models with age structure, proportionate mixing, and cross-immunity. J. Math. Biol. 27 (1989), 233-258. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. S. Gupta, M. C. J. Maiden, I. M. Feavers, S. Nee, R. M. May, R. M. Anderson. The maintenance of strain structure in populations of recombining infectious agents. Nat. Med. 2 (1996), 437-442. [CrossRef] [PubMed] [Google Scholar]
  18. V. Andreasen, J. Lin, S. A. Levin. The dynamics of cocirculating influenza strains conferring partial cross-immunity. J. Math. Biol. 35 (1997), 825-842. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. S. Gupta, N. Ferguson, R. M. Anderson. Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents. Science 280 (1998), 912-915. [CrossRef] [PubMed] [Google Scholar]
  20. J. Lin, V. Andreason, S. A. Levin. Dynamics of influenza A drift :the linear three-strain model. Math. Biosci. 162 (1999), 33-51. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  21. J. R. Gog, J. Swinton. A Status-based Approach to Multiple Strain Dynamics. J. Math. Biol. 44 (2002), 169-184. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  22. J. R. Gog, B. T. Grenfell. Dynamics and selection of many-strain pathogens. Proc. Natl. Acad. Sci. USA 99 (2002), 17209-17214. [CrossRef] [Google Scholar]
  23. M. Kamo, A. Sasaki. The Effect of Cross-immunity and Seasonal Forcing in a multi-strain epidemic model. Physica D 165 (2002), 228-241. [CrossRef] [Google Scholar]
  24. J. Lin, V. Andreasen, R. Casagrandi, S. A. Levin. Travelling waves in a model of influenza A drift. J. Theor. Biol. 222 (2003), 437-445. [Google Scholar]
  25. V. Andreasen, J. Lin, S. A. Levin. The dynamics of cocirculating influenza strains conferring partial cross-immunity. J. Math. Biol. 35 (1997), 825-842. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  26. M. F. Boni, J. R. Gog, V. Andreasen, F. B. Christiansen. Influenza drift and epidemic size : the race between generating and escaping immunity. Theor. Popul. Biol. 65 (2004), 179-191. [CrossRef] [PubMed] [Google Scholar]
  27. O. Restif, B. T. Grenfell. Integrating life history and cross-immunity into the evolutionary dynamics of pathogens. Proc. R. Soc. B 273 (2006), 409-416. [CrossRef] [Google Scholar]
  28. B. Adams, A. Sasaki. Cross-immunity, invasion and coexistence of pathogen strains in epidemiological models with one-dimensional antigenic space. Math. Biosci. 210 (2007), 680-699. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  29. P. Minayev, N. Ferguson. Improving the realism of deterministic multi-strain models : implications for modelling influenza A. J. R. Soc. Interface. 6 (2009), 509-518. [PubMed] [Google Scholar]
  30. C. Pease. An evolutionary epidemiological mechanism, with applications to type A influenza. Theor. Popul. Biol. 31 (1987), 422-452. [CrossRef] [PubMed] [Google Scholar]
  31. R. Casagrandi, L. Bolzoni, S. A. Levin, V. Andreasen. The SIRC model and influenza A. Math. Biosci. 200 (2006), 152-169. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  32. M. Nuno, Z. Feng, M. Martcheva, C. Castillo-Chavez. Dynamics of two-strain influenza with isolation and partial cross-immunity. SIAM J. Appl. Math. 65 (2005), 964-982. [CrossRef] [MathSciNet] [Google Scholar]
  33. M. Nuno, G. Chowell, X. Wang, C. Castillo-Chavez. On the role of cross-immunity and vaccines on the survival of less fit flu-strains. Theor. Popul. Biol. 71 (2007), 20-29. [CrossRef] [PubMed] [Google Scholar]
  34. M. J. Keeling, P. Rohani. Modeling Infectious Diseases in Humans and Animals. Princeton University Press, New Jersey, 2008. [Google Scholar]
  35. L. Edelstein-Keshet. Mathematical Models in Biology. Random House, New York, 1986 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.