Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 3, 2012
Epidemiology
Page(s) 40 - 48
DOI https://doi.org/10.1051/mmnp/20127304
Published online 06 June 2012
  1. A.S. Perelson, G. Weisbuch (Eds.). Theoretical Immunology, Part One. Springer, Berlin, 1988. [Google Scholar]
  2. A.S. Perelson (Ed.). Theoretical Immunology, Part Two. Addison Wesley, Redwood City, CA, 1988. [Google Scholar]
  3. A.S. Perelson, G. Weisbuch. Immunology for physicists. Rev. Mod. Phys., 69 (1997), 1219–1267. [CrossRef] [Google Scholar]
  4. R. Puzone, B. Kohler, P.E. Seiden, F. Celada. IMMSIM, a flexible model for in machina experiments on immune system responses. Future Gener. Comput. Syst., 18 (2002), No. 7, 961–972. [CrossRef] [Google Scholar]
  5. M. Meier-Schellersheim, G. Mack. Simmune : A tool for simulating and analyzing immune system behavior. Das Deutsche Elektronen-Synchrotron Technical Report, 1999. [Google Scholar]
  6. F. Castiglione Agent based modeling. Scholarpedia, 1 (2006), No. 10, 1562. [CrossRef] [Google Scholar]
  7. M. Kaufman, J. Urbain, R. Thomas. Towards a logical analysis of the immune response. J. Th. Biol., 114 (1985), 527–561. [Google Scholar]
  8. F. Celada, P.E. Seiden. Affinity maturation and hypermutation in a simulation of the humoral immune response. Eur. J. Immunol., 26 (1996), No. 6, 1350–1358. [Google Scholar]
  9. F. Celada, P.E. Seiden. A computer model of cellular interactions in the immune system. Immunol. Today, 13 (1992), No. 2, 56–62. [CrossRef] [PubMed] [Google Scholar]
  10. P.E. Seiden, F. Celada. A model for simulating cognate recognition and response in the immune system. J. Th. Biol., 158 (1992), No. 3, 329–357. [CrossRef] [Google Scholar]
  11. D. Morpurgo, R. Serenthà, P.E. Seiden, F. Celada. Modelling thymic functions in a cellular automaton. Int. Immunol., 7 (1995), No. 4, 505–516. [CrossRef] [PubMed] [Google Scholar]
  12. F. Castiglione, F. Poccia, G. D’Offizi, M. Bernaschi. Mutation, fitness, viral diversity and predictive markers of disease p rogression in a computational model of HIV-1 infection. AIDS Res. Human Retrovirus, 20 (2004), No. 12, 1316–1325. [CrossRef] [Google Scholar]
  13. F. Castiglione, K.A. Duca, A.S. Jarrah, R. Laubenbacher, K. Luzuriaga, D. Hochberg, D.A. Thorley-Lawson. Simulating Epstein-Barr virus infection with C-ImmSim. Bioinformatics, 23 (2007), 1371–1377. [CrossRef] [PubMed] [Google Scholar]
  14. F. Castiglione, V. Sleitser, Z. Agur. Analyzing hypersensitivity to chemotherapy in a Cellular Automata model of the immune system, in Cancer Modeling and Simulation, L. Preziosi (Ed.), pages 333–365. Chapman & Hall/CRC Press, London, UK, 2003. [Google Scholar]
  15. F. Pappalardo, P-L. Lollini, F. Castiglione, S. Motta. Modelling and simulation of cancer immunoprevention vaccine. Bioinformatics, 21 (2005), No. 12, 2891–2897. [CrossRef] [PubMed] [Google Scholar]
  16. P. Paci, R. Carello, M. Bernaschi, G. D’Offizi, F. Castiglione. Immune control of HIV-1 infection after therapy interruption : immediate versus deferred antiretroviral therapy. BMC Infect. Dis., 9 (2009), 172. [CrossRef] [PubMed] [Google Scholar]
  17. J.D. Farmer, N.H. Packard, and A.S. Perelson. The immune system, adaptation and machine learning. Physica D, 22 (1986), 187–204. [CrossRef] [Google Scholar]
  18. P. Paci, F. Castiglione, M. Bernaschi, V. Baldazzi. A discrete/continuous model of anti-HIV response and therapy. IEEE Computer Society, Digital library Proceedins UKSIM, pages 481–486, 2008. [Google Scholar]
  19. V. Baldazzi, P. Paci, M. Bernaschi, F. Castiglione. Modeling lymphocytes homing and encounters in lymph nodes. BMC Bioinformatics, 10 (2009), 387. [CrossRef] [PubMed] [Google Scholar]
  20. P. Paci, F. Martini, M. Bernaschi, F. D’Offizi, F. Castiglione. Earlier is better : a timely HAART initiation may pave the way for best controllers. BMC Infectious Diseases, 11 (2011), 56. [Google Scholar]
  21. F. Castiglione, P. Paci. Criticality of timing for anti-HIV therapy initiation. PLoS ONE, 5 (2010), No. 12, e15294. [CrossRef] [PubMed] [Google Scholar]
  22. L.L. Laichalk, D.A. Thorley-Lawson. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J. Virol., 79 (2005), 1296–1307. [CrossRef] [PubMed] [Google Scholar]
  23. A.B. Kay AB. Allergy and allergic diseases. First Part. N. Engl. J. Med., 344 (2001), 30–37. [CrossRef] [PubMed] [Google Scholar]
  24. R.A. Goldsby, T.J. Kindt, B.A. Osborne. Kuby Immunology, IV ed.. W.H. Freeman & Co., NY, 2000. [Google Scholar]
  25. A.B. Kay. Allergy and allergic diseases. Second Part. N. Engl. J. Med., 344 (2001), 109–113. [CrossRef] [PubMed] [Google Scholar]
  26. S.T. Holgate. Allergic disorders. British Med. J., 320 (2000), 231–234. [CrossRef] [Google Scholar]
  27. D. Santoni, M. Pedicini, F. Castiglione. Implementation of a regulatory gene network to simulate the TH1/2 differentiation in an agent-based model of hyper-sensitivity reactions. Bioinformatics, 24 (2008), 1374–1380. [CrossRef] [PubMed] [Google Scholar]
  28. G.K. Hansson. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med., 352 (2002), No. 16, 1685–1695. [Google Scholar]
  29. A. Romero-Corral, V.K. Somers, J. Korinek, J. Sierra-Johnson, R.J. Thomas, T.G. Allison, F. Lopez-Jimenez. Update in prevention of atherosclerotic heart disease : management of major cardiovascular risk factors. Rev. Invest. Clin., 58 (2006), No. 3, 237–244. [PubMed] [Google Scholar]
  30. C. Weber, A. Zernecke, P. Libby. The multifaceted contributions of leukocyte subsets to atherosclerosis : lessons from mouse models. Nat. Rev. Immunol., 8 (2008), No. 10, 802–815. [CrossRef] [PubMed] [Google Scholar]
  31. F. Pappalardo, S. Musumeci, S. Motta. Modeling immune system control of atherogenesis. Bioinformatics, 24 (2008), No. 15, 1715–1721. [CrossRef] [PubMed] [Google Scholar]
  32. M. Meier-Schellersheim. The immune system as a complex system : Description and simulation of the interactions of its constituents. Ph.D. thesis, University of Hamburg, Germany, 2001. [Google Scholar]
  33. S. Efroni, D. Harel, I.R. Cohen. Toward rigorous comprehension of biological complexity : modeling, execution, and visualization of thymic T-cell maturation. Genome Res., 13 (2003), No. 11, 2485–2497. [CrossRef] [PubMed] [Google Scholar]
  34. J.K. Kalita, K. Chandrashekar, R. Hans, R. Selvam. Computational modelling and simulation of the immune system. Int. J. Bioinf. Res. Appl., 2 (2006), No. 1, 63–88. [Google Scholar]
  35. V.A. Folcik, G.C. An, C.G. Orosz. The basic immune simulator : an agent-based model to study the interactions between innate and adaptive immunity. Theor. Biol. Med. Model., 4 (2007), 39. [CrossRef] [PubMed] [Google Scholar]
  36. R.C. Laubenbacher, A.S. Jarrah, H.S. Mortveit, S.S. Ravi. A mathematical formalism for agent-based modeling. CoRR., (2008), abs/0801.0249. [Google Scholar]
  37. S.Y. Del Valle, P.D. Stroud, J.P. Smith, S.M. Mniszewski, J.M. Riese, S.J. Sydoriak, D.A. Kubicek. Episims : Epidemic simulation system. Los Alamos Unlimited Release (LAUR), (2006), 06-06714. [Google Scholar]
  38. S. Mniszewski, S.Y. Del Valle, P. Stroud, J. Riese, S. Sydoriak. Episims simulation of a multi-component strategy for pandemic influenza. Proceedings of the 2008 Spring Simulation Multiconference, 2008. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.